According to Buckingham Theorem the rank of A should be 2

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    rank Theorem
Click For Summary
SUMMARY

The discussion centers on the application of the Buckingham Theorem to determine the rank of a matrix representing a physical system described by the equation $f(E,P,A)=0$. The matrix $A$, constructed from the dimensions of energy, pressure, and surface area, is shown to have a rank of 2 due to the presence of two linearly independent column vectors. Participants clarify the distinction between the rank of a matrix and the order of an element, emphasizing that the rank reflects the dimension of the matrix's range, which is critical for constructing dimensionless quantities.

PREREQUISITES
  • Understanding of dimensional analysis in physics
  • Familiarity with matrix theory, specifically rank and linear independence
  • Knowledge of the Buckingham Pi Theorem
  • Basic algebraic concepts, including vector spaces and spans
NEXT STEPS
  • Study the Buckingham Pi Theorem in detail to understand its applications in dimensional analysis
  • Learn about matrix rank and its implications in linear algebra
  • Explore examples of constructing dimensionless quantities from physical laws
  • Investigate the relationship between linear independence and the span of vectors in vector spaces
USEFUL FOR

Students and professionals in physics, engineering, and mathematics who are interested in dimensional analysis, matrix theory, and the application of the Buckingham Theorem in physical systems.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

A physical system is described by a law of the form $f(E,P,A)=0$, where $E,P,A$ represent, respectively, energy, pressure and surface area. Find an equivalent physical law that relates suitable dimensionless quantities.

That' what I have tried so far:

1st step:


Choice of quantities


Mass: $M$

Time: $T$

Length: $L$

So:

$$[E]=M L^2 T^{-2}$$
$$[P]=ML^{-1}T^{-2}$$
$$[A]=L^2$$2nd step:

Construction of dimonsionless quantities
The matrix of dimensions:$A=\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}$I tried to find the rank, determining the smallest $n$ for which $A^n=I$.$\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}=\begin{bmatrix}
-1 & -1 & 0\\
2 & 2 & 0 \\
8 & 2 &4
\end{bmatrix}$$\begin{bmatrix}
-1 & -1 & 0\\
2 & 2 & 0 \\
8 & 2 &4
\end{bmatrix}\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}=\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
12 & 0 &8
\end{bmatrix}$But I saw the solution and there should be only one dimensionless quantity, so according to Buckingham Theorem the rank of $A$ should be $2$.

Where is my mistake? (Thinking)
 
Mathematics news on Phys.org
Hey! (Smile)

evinda said:
I tried to find the rank, determining the smallest $n$ for which $A^n=I$.

Isn't that the order of $A$ instead of the rank of $A$? (Wondering)
The rank of $A$ is indeed $2$.
 
I like Serena said:
Isn't that the order of $A$ instead of the rank of $A$? (Wondering)

What is the difference between order and rank? (Thinking)
I like Serena said:
The rank of $A$ is indeed $2$.

Because of the fact that there are two linearly dependent rows? (Thinking)
 
evinda said:
What is the difference between order and rank? (Thinking)

In algebra the order of an element $a$ is the lowest power $n$ such that $a^n=id$.

The rank of a matrix is the dimension of its range. (Nerd)
Because of the fact that there are two linearly dependent rows? (Thinking)

Yes. (Nod)

More specifically, there are 2 linearly independent column vectors.
The range of the matrix is the span of those 2 vectors, meaning that range has dimension 2. (Emo)
 
I like Serena said:
In algebra the order of an element $a$ is the lowest power $n$ such that $a^n=id$.

The rank of a matrix is the dimension of its range. (Nerd)

A ok... (Nod)

I like Serena said:
Yes. (Nod)

More specifically, there are 2 linearly independent column vectors.
The range of the matrix is the span of those 2 vectors, meaning that range has dimension 2. (Emo)

So could we say that the following two vectors
$\begin{pmatrix}
1\\
-2\\
-1
\end{pmatrix} , \begin{pmatrix}
0\\
0\\
2
\end{pmatrix}$ span the vector space of the matrix? (Thinking)
 
evinda said:
So could we say that the following two vectors
$\begin{pmatrix}
1\\
-2\\
-1
\end{pmatrix} , \begin{pmatrix}
0\\
0\\
2
\end{pmatrix}$ span the vector space of the matrix? (Thinking)

Yes. (Nod)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 43 ·
2
Replies
43
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K