According to Buckingham Theorem the rank of A should be 2

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    rank Theorem
Click For Summary

Discussion Overview

The discussion revolves around the application of the Buckingham Theorem to determine the rank of a matrix representing a physical system described by a law involving energy, pressure, and surface area. Participants explore the concepts of dimensionless quantities, matrix rank, and the distinction between rank and order in the context of linear algebra.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents a physical law and attempts to construct dimensionless quantities, leading to a matrix of dimensions.
  • Another participant questions whether the method used to find the rank is appropriate, suggesting a potential confusion between the concepts of order and rank.
  • Some participants clarify that the rank of the matrix is indeed 2, citing the presence of two linearly independent column vectors.
  • There is a discussion about the definitions of order and rank, with references to linear dependence and the dimension of the matrix's range.
  • A participant proposes specific vectors and asks if they span the vector space of the matrix, receiving confirmation from others.

Areas of Agreement / Disagreement

Participants generally agree that the rank of the matrix is 2, but there is some confusion regarding the distinction between the concepts of order and rank. The discussion includes multiple viewpoints on the interpretation of these concepts.

Contextual Notes

There is an unresolved aspect regarding the method used to determine the rank, as well as the implications of linear dependence among the rows of the matrix. The discussion does not reach a consensus on the initial approach to finding the rank.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

A physical system is described by a law of the form $f(E,P,A)=0$, where $E,P,A$ represent, respectively, energy, pressure and surface area. Find an equivalent physical law that relates suitable dimensionless quantities.

That' what I have tried so far:

1st step:


Choice of quantities


Mass: $M$

Time: $T$

Length: $L$

So:

$$[E]=M L^2 T^{-2}$$
$$[P]=ML^{-1}T^{-2}$$
$$[A]=L^2$$2nd step:

Construction of dimonsionless quantities
The matrix of dimensions:$A=\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}$I tried to find the rank, determining the smallest $n$ for which $A^n=I$.$\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}=\begin{bmatrix}
-1 & -1 & 0\\
2 & 2 & 0 \\
8 & 2 &4
\end{bmatrix}$$\begin{bmatrix}
-1 & -1 & 0\\
2 & 2 & 0 \\
8 & 2 &4
\end{bmatrix}\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}=\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
12 & 0 &8
\end{bmatrix}$But I saw the solution and there should be only one dimensionless quantity, so according to Buckingham Theorem the rank of $A$ should be $2$.

Where is my mistake? (Thinking)
 
Mathematics news on Phys.org
Hey! (Smile)

evinda said:
I tried to find the rank, determining the smallest $n$ for which $A^n=I$.

Isn't that the order of $A$ instead of the rank of $A$? (Wondering)
The rank of $A$ is indeed $2$.
 
I like Serena said:
Isn't that the order of $A$ instead of the rank of $A$? (Wondering)

What is the difference between order and rank? (Thinking)
I like Serena said:
The rank of $A$ is indeed $2$.

Because of the fact that there are two linearly dependent rows? (Thinking)
 
evinda said:
What is the difference between order and rank? (Thinking)

In algebra the order of an element $a$ is the lowest power $n$ such that $a^n=id$.

The rank of a matrix is the dimension of its range. (Nerd)
Because of the fact that there are two linearly dependent rows? (Thinking)

Yes. (Nod)

More specifically, there are 2 linearly independent column vectors.
The range of the matrix is the span of those 2 vectors, meaning that range has dimension 2. (Emo)
 
I like Serena said:
In algebra the order of an element $a$ is the lowest power $n$ such that $a^n=id$.

The rank of a matrix is the dimension of its range. (Nerd)

A ok... (Nod)

I like Serena said:
Yes. (Nod)

More specifically, there are 2 linearly independent column vectors.
The range of the matrix is the span of those 2 vectors, meaning that range has dimension 2. (Emo)

So could we say that the following two vectors
$\begin{pmatrix}
1\\
-2\\
-1
\end{pmatrix} , \begin{pmatrix}
0\\
0\\
2
\end{pmatrix}$ span the vector space of the matrix? (Thinking)
 
evinda said:
So could we say that the following two vectors
$\begin{pmatrix}
1\\
-2\\
-1
\end{pmatrix} , \begin{pmatrix}
0\\
0\\
2
\end{pmatrix}$ span the vector space of the matrix? (Thinking)

Yes. (Nod)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 43 ·
2
Replies
43
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K