MHB Adj ( adj A ) = ( det A )^(n-2) A (ARSLAN's question at Yahoo Answers)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Click For Summary
The discussion centers on proving the equation adj(adj(A)) = A(det A)^(n-2) for an n x n matrix A. It references the relationship between an invertible matrix M and its adjugate, stating that adj M can be expressed in terms of M's determinant and its inverse. By applying properties of determinants and adjugates, the proof derives that the adjugate of the adjugate of A simplifies to the product of A and the determinant raised to the power of (n-2). The mathematical steps provided clarify how these properties lead to the final result. This proof reinforces the foundational concepts of linear algebra regarding matrix adjugates and determinants.
Mathematics news on Phys.org
Hello ARSLAN,

If $M$ is an invertible $n\times n$ matrix, then $M^{-1}=\dfrac{1}{\det M}\mbox{adj } M$ that is $\mbox{adj } M=(\det M)M^{-1}$.

Using well known properties ($\det (aM)=a^n\det M$, $(aM)^{-1}=a^{-1}M^{-1}$ etc):
$$\mbox{adj } \left(\mbox{adj }A \right)=\mbox{adj } \left((\det A)A^{-1}\right)=\det\left((\det A)A^{-1}\right)\cdot\left((\det A)A^{-1}\right)^{-1}\\\left((\det A)^n\cdot\frac{1}{\det A}\right)\cdot\left(\frac{1}{\det A}\cdot (A^{-1})^{-1}\right)=(\det A)^{n-2}A$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K