MHB Adj ( adj A ) = ( det A )^(n-2) A (ARSLAN's question at Yahoo Answers)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Click For Summary
The discussion centers on proving the equation adj(adj(A)) = A(det A)^(n-2) for an n x n matrix A. It references the relationship between an invertible matrix M and its adjugate, stating that adj M can be expressed in terms of M's determinant and its inverse. By applying properties of determinants and adjugates, the proof derives that the adjugate of the adjugate of A simplifies to the product of A and the determinant raised to the power of (n-2). The mathematical steps provided clarify how these properties lead to the final result. This proof reinforces the foundational concepts of linear algebra regarding matrix adjugates and determinants.
Mathematics news on Phys.org
Hello ARSLAN,

If $M$ is an invertible $n\times n$ matrix, then $M^{-1}=\dfrac{1}{\det M}\mbox{adj } M$ that is $\mbox{adj } M=(\det M)M^{-1}$.

Using well known properties ($\det (aM)=a^n\det M$, $(aM)^{-1}=a^{-1}M^{-1}$ etc):
$$\mbox{adj } \left(\mbox{adj }A \right)=\mbox{adj } \left((\det A)A^{-1}\right)=\det\left((\det A)A^{-1}\right)\cdot\left((\det A)A^{-1}\right)^{-1}\\\left((\det A)^n\cdot\frac{1}{\det A}\right)\cdot\left(\frac{1}{\det A}\cdot (A^{-1})^{-1}\right)=(\det A)^{n-2}A$$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K