- #1

- 64

- 3

## Homework Statement

Hi guys. So for my biology class, we were doing a water chemistry experiment.

We placed potato cells into beakers of different [sucrose] (dissolved in water). The goal was to plot the change in mass % on a graph, make a linear trendline, and see which solution was isotonic with the [sucrose] in potato cells.

So the answer was the 0.31M solution of sucrose.

Now,

I need to determine all the experimental errors. The amount of solution in the beakers was not equivalent (neither was the mass of the potato cores).

My main question is:

Assume that we have 2 beakers with the same mass of potato cells placed into them, both sets of potato cells have an equal concentration of sucrose, and both beakers have an equal concentration of sucrose. Let’s also assume the solution is hypertonic to the potato cells (so net water movement will be towards the solution).

If one beaker has a higher volume of water than the other, will it take longer for it to reach the equilibrium concentration and why?

If so, could I list it as an experimental error as all solutions might not be at equilibrium (The beakers were placed overnight and 10-15 mL of water was used in conjunction with 5-10 grams of potato)

## Homework Equations

I know the equation for rate of diffusion for gas molecules. I don’t know if that applies to liquid situations.

## The Attempt at a Solution

My theory is that it will take longer for the concentration of sucrose to be equal inside and outside the cell because if the rate of diffusion is the same, then the water molecules have to travel farther distances to equalize the larger volume of water.

I could be completely wrong as I have not studied this concept to a high level degree.

Thank you for any help guys.