Dale said:
I believe you intend to include both the mapping to experiment and also metaphysical claims about reality.
Good point I hadn't thought of before.
John Baez's writings has often influenced me in my views on interpretations:
http://math.ucr.edu/home/baez/bayes.html
In particular:
'It turns out that a lot of arguments about the interpretation of quantum theory are at least partially arguments about the meaning of the probability!'
You have to have an interpretation of probability to do the mapping. Interpretations like the ensemble do only that. I would call them minimal.
An interesting observation is that in math we generally do not worry about interpretations of probability - we either apply it as most books like Feller's classic do or we simply look at the consequences of the Kolmogorov axioms as books on rigorous probability theory do. People generally do not get caught up much in the interpretation issue - but in Quantum Theory we have all sorts of, how to put it, 'vigorous' discussions about it. That always has struck me as, well interesting.
But others go further - even Copenhagen goes further (at least in some versions - there seems no standard version). But it generally seems to be something like (from a blog discussion on it):
1. A system is completely described by a wave function ψ, representing an observer's subjective knowledge of the system. (Heisenberg)
2. The description of nature is essentially probabilistic, with the probability of an event related to the square of the amplitude of the wave function related to it. (The Born rule, after Max Born)
3. It is not possible to know the value of all the properties of the system at the same time; those properties that are not known with precision must be described by probabilities. (Heisenberg's uncertainty principle)
4. Matter exhibits a wave–particle duality. An experiment can show the particle-like properties of matter, or the wave-like properties; in some experiments both of these complementary viewpoints must be invoked to explain the results, according to the complementarity principle of Niels Bohr.
5. Measuring devices are essentially classical devices, and measure only classical properties such as position and momentum.
6. The quantum mechanical description of large systems will closely approximate the classical description. (The correspondence principle of Bohr and Heisenberg)
The above contains quite few debatable points:
1. Is a quantum system completely described by the wave function?
2. Wave particle duality - its really neither wave or particle - it's quantum stuff.
3. There are in a sense no classical systems - its all really quantum stuff. If you do not view it as all quantum stuff you face a problem - exactly where is the dividing line?
Every one of those really requires a thread of their own, so I will not discuss them here except to say modern interpretations like decoherent histories realize they are issues and try to correct them - which was the view of the blog I got it from. But we should not be too harsh, Copenhagen was formulated in the early days of QM - things have moved on a lot since then.
On thing that always brings a bit of a smile to my face is Einstein was the original champion of the Ensemble interpretation. It seems to have come through mostly unchanged to modern times. But Copenhagen, championed by his old sparring partner, and good friend, Bohr, didn't. Could it be Einstein, after his debates with Bohr saw to the heart of it better? Einstein was wrong to object to QM so strongly at it's birth, but eventually he came to accept it as correct. To be fair though his objections did strengthen the theory. But to his dying day thought it incomplete - which due to various unresolved issues like quantum gravity is of course true - but may change in the future - or actually be shown as incomplete.
Thanks
Bill