Algabraic field extensions (true false questions)

  • Thread starter Thread starter cap.r
  • Start date Start date
  • Tags Tags
    Field
Click For Summary
The discussion revolves around true/false questions regarding algebraic field extensions. Key points include the assertion that every field has nontrivial extensions, while not every field has nontrivial algebraic extensions, particularly in algebraically closed fields. It is clarified that every simple extension is algebraic only under certain conditions, and that not all extensions are simple, especially in fields with characteristic zero. The conversation also touches on the nature of minimal polynomials, noting that while they are defined to be monic, not all monic polynomials are irreducible. Finally, the distinction between transcendental extensions and their isomorphism is emphasized, with examples provided to illustrate these concepts.
cap.r
Messages
64
Reaction score
0

Homework Statement


Can you please check my answers and help me develop explanation for the ones I can't explain.

a) every field has nontrivial extensions.
b) every field has nontrivial algebraic extensions.
c) every simple extension is algebraic.
d) every extension is simple.
e) all simple algebraic extensions of a given subfield of C are isomorphic.
f) all simple transcendental extensions of a given subfield of C are isomorphic.
g) every minimal polynomial is monic.
h) monic polynomails are always irreducible.
i) every polynomial is a constant multiple of an irreducible polynomial.

2. The attempt at a solution
a) true I am thinking of C and adding something that's not in it. like a cube rotation or something call it J. a in C. a+J is a*90degree rotation of the cube. a*J is number of flips. and J+J is a 180 rotation. J*J is again a flip.
b) false. a flip wouldn't be a solution to anything in C. so it has to be a transcendental extension.
c) false Q(pi) is simple and transcendetal.
d) false. only true for when the field has characteristic 0.
e) false? need explanation
f) true? need explanation
g) true. definition of minimal polynomial was that it's monic.
h) false. x^2+4x+2
i) false. need explanation
 
Physics news on Phys.org
a) Any field can be the base field for a polynomial ring, so true.

b) An algebraically closed field has no nontrivial algebraic extensions.

c) Like you said.

d) Like you said, except only finite extensions in characteristic zero are necessarily simple.

e) Q is a subfield of C, and Q(\sqrt{2}) is not isomorphic to Q(\sqrt{3}).

f) Transcendentals don't solve any polynomial, so one is as good as another.

g) Right.

h) Right.

i) It doesn't say nonzero constant, and zero is an irreducible polynomial...but that's pretty cheesy.
 
Tinyboss said:
zero is an irreducible polynomial...
Au contraire, I bet I can write zero as a product of two non-units...
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
8K
  • · Replies 2 ·
Replies
2
Views
3K