CGR_JAMA
- 4
- 0
The Lagrangian function L(\mathop{q}\limits_{(x)} ,\partial _{\bullet } \mathop{q}\limits_{(x)} ) on a field theory's action-integral is a generally covariant scalar-density so the resulting field equations obtained by using the standard Lagrange's expresions will inevitably involve tensor-densities:
I\equiv k.\int _{D}L(\mathop{q}\limits_{(x)} ,\partial _{\bullet } \mathop{q}\limits_{(x)} ).d\Omega
\delta I\equiv 0 \leftrightarrow \partial _{k} \left(\frac{\partial L}{\partial \partial _{k} \mathop{q}\limits_{(x)} } \right)-\frac{\partial L}{\partial \mathop{q}\limits_{(x)} } =0 (tensor densitie's equations)
The following method avoids working with them: let's assume the Lagrangian density can be represented as the product of a reference density (which can never be null) and a scalar function both depending on the dynamic variables:
L(\mathop{q}\limits_{(x)} ,\partial _{\bullet } \mathop{q}\limits_{(x)} )\equiv \sigma (\mathop{q}\limits_{(x)} ,\partial _{\bullet } \mathop{q}\limits_{(x)} ).\Lambda (\mathop{q}\limits_{(x)} ,\partial _{\bullet } \mathop{q}\limits_{(x)} )
Based on them the Lagrange's equations can be modified for directly returning tensor expressions:
\[\partial _{k} \left(\frac{\partial \Lambda }{\partial \partial _{k} \mathop{q}\limits_{(x)} } \right)-\frac{\partial \Lambda }{\partial \mathop{q}\limits_{(x)} } +\left(\partial _{k} (\frac{\partial \psi }{\partial \partial _{k} \mathop{q}\limits_{(x)} } )-\frac{\partial \psi }{\partial \mathop{q}\limits_{(x)} } +\frac{\partial \psi }{\partial \partial _{k} \mathop{q}\limits_{(x)} } .\partial _{k} \psi \right).\Lambda +\frac{\partial \psi }{\partial \partial _{k} \mathop{q}\limits_{(x)} } .\partial _{k} \Lambda +\frac{\partial \Lambda }{\partial \partial _{k} \mathop{q}\limits_{(x)} } .\partial _{k} \psi =0\]
/ \psi \equiv \ln (\sigma ) , \sigma \ne 0
On a curved Riemann space (also on a flat one when working with curvilinear coordinates) there is already a reference density based on the metric tensor:
\sigma (g_{\bullet \bullet } )\equiv \sqrt{-\left|g_{\bullet \bullet }
\psi \equiv \ln (\sqrt{-\left|g_{\bullet \bullet } \right|} ) \to \frac{\partial \psi }{\partial g^{ij} } =-{\tfrac{1}{2}} .g_{ij} , \partial _{i} \psi =\Gamma _{i}
For a metric-affine dependent scalar function the equivalent Lagrange's equations become:
\Lambda \equiv \Lambda (g^{\bullet \bullet } ,{\Gamma }^{\bullet } _{\bullet \bullet } ,\partial _{\bullet } {\Gamma }^{\bullet } _{\bullet \bullet })
\to \partial _{k} \left(\frac{\partial \Lambda }{\partial \partial _{k} \mathop{q}\limits_{(x)} } \right)-\frac{\partial \Lambda }{\partial \mathop{q}\limits_{(x)} } +\Gamma _{k} .\frac{\partial \Lambda }{\partial \partial _{k} \mathop{q}\limits_{(x)} } =0 / \mathop{q}\limits_{(x)} \ne g^{ij}
\frac{\partial \Lambda }{\partial g^{ij} } -{\tfrac{1}{2}} .g_{ij} .\Lambda =0 / \mathop{q}\limits_{(x)} =g^{ij}
This can be applied directly to General Relativity's action for obtaining the known Einstein's equations:
\[I_{G} \equiv \int _{D}\sqrt{-\left|g_{\bullet \bullet } \right|} .g^{kr} .R_{kr}. d\Omega \]
\to \nabla _{i} g^{jk} =0
\[R_{ij} -{\tfrac{1}{2}} .R.g_{ij} =0\]
I hope this helps.
CGR_JAMA
I\equiv k.\int _{D}L(\mathop{q}\limits_{(x)} ,\partial _{\bullet } \mathop{q}\limits_{(x)} ).d\Omega
\delta I\equiv 0 \leftrightarrow \partial _{k} \left(\frac{\partial L}{\partial \partial _{k} \mathop{q}\limits_{(x)} } \right)-\frac{\partial L}{\partial \mathop{q}\limits_{(x)} } =0 (tensor densitie's equations)
The following method avoids working with them: let's assume the Lagrangian density can be represented as the product of a reference density (which can never be null) and a scalar function both depending on the dynamic variables:
L(\mathop{q}\limits_{(x)} ,\partial _{\bullet } \mathop{q}\limits_{(x)} )\equiv \sigma (\mathop{q}\limits_{(x)} ,\partial _{\bullet } \mathop{q}\limits_{(x)} ).\Lambda (\mathop{q}\limits_{(x)} ,\partial _{\bullet } \mathop{q}\limits_{(x)} )
Based on them the Lagrange's equations can be modified for directly returning tensor expressions:
\[\partial _{k} \left(\frac{\partial \Lambda }{\partial \partial _{k} \mathop{q}\limits_{(x)} } \right)-\frac{\partial \Lambda }{\partial \mathop{q}\limits_{(x)} } +\left(\partial _{k} (\frac{\partial \psi }{\partial \partial _{k} \mathop{q}\limits_{(x)} } )-\frac{\partial \psi }{\partial \mathop{q}\limits_{(x)} } +\frac{\partial \psi }{\partial \partial _{k} \mathop{q}\limits_{(x)} } .\partial _{k} \psi \right).\Lambda +\frac{\partial \psi }{\partial \partial _{k} \mathop{q}\limits_{(x)} } .\partial _{k} \Lambda +\frac{\partial \Lambda }{\partial \partial _{k} \mathop{q}\limits_{(x)} } .\partial _{k} \psi =0\]
/ \psi \equiv \ln (\sigma ) , \sigma \ne 0
On a curved Riemann space (also on a flat one when working with curvilinear coordinates) there is already a reference density based on the metric tensor:
\sigma (g_{\bullet \bullet } )\equiv \sqrt{-\left|g_{\bullet \bullet }
\psi \equiv \ln (\sqrt{-\left|g_{\bullet \bullet } \right|} ) \to \frac{\partial \psi }{\partial g^{ij} } =-{\tfrac{1}{2}} .g_{ij} , \partial _{i} \psi =\Gamma _{i}
For a metric-affine dependent scalar function the equivalent Lagrange's equations become:
\Lambda \equiv \Lambda (g^{\bullet \bullet } ,{\Gamma }^{\bullet } _{\bullet \bullet } ,\partial _{\bullet } {\Gamma }^{\bullet } _{\bullet \bullet })
\to \partial _{k} \left(\frac{\partial \Lambda }{\partial \partial _{k} \mathop{q}\limits_{(x)} } \right)-\frac{\partial \Lambda }{\partial \mathop{q}\limits_{(x)} } +\Gamma _{k} .\frac{\partial \Lambda }{\partial \partial _{k} \mathop{q}\limits_{(x)} } =0 / \mathop{q}\limits_{(x)} \ne g^{ij}
\frac{\partial \Lambda }{\partial g^{ij} } -{\tfrac{1}{2}} .g_{ij} .\Lambda =0 / \mathop{q}\limits_{(x)} =g^{ij}
This can be applied directly to General Relativity's action for obtaining the known Einstein's equations:
\[I_{G} \equiv \int _{D}\sqrt{-\left|g_{\bullet \bullet } \right|} .g^{kr} .R_{kr}. d\Omega \]
\to \nabla _{i} g^{jk} =0
\[R_{ij} -{\tfrac{1}{2}} .R.g_{ij} =0\]
I hope this helps.
CGR_JAMA
Last edited: