1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Ambiguities of the "..." notation

  1. Sep 12, 2018 #1

    Stephen Tashi

    User Avatar
    Science Advisor

    A popular response to a novice asking whether .999... = 1 is for an expert to demand that novice define what the notation ".999..." means. I think this is the best response. However, I note that many experts tend to accept the "..." notation in other contexts without demanding an explanation.

    The video points out ambiguities in interpreting the "..." notation.

    He points out that Ramanujan's famous proof that
    ##\sqrt{ 1 + 2 {\sqrt{1 + 3 \sqrt{1 + 4 ...}}}} = 3 ## is invalid.

    At 8;15 he points out two different plausible interpretations of infinitely continued fractions.
     
  2. jcsd
  3. Sep 12, 2018 #2

    Drakkith

    User Avatar
    Staff Emeritus
    Science Advisor

    Very nice video. I've seen several Mathologer videos before and they tend to be very enjoyable and insightful, with excellent (and accurate) explanations about things that are often confusing or used incorrectly.
     
  4. Sep 12, 2018 #3

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    The three dots "..." are formally called "ellipsis" and to use them is being "elliptical", which can also mean omitting details so as to be hard to understand.

    In these cases, therefore, the presenter could be elliptical, in both senses of the word.
     
    Last edited: Sep 12, 2018
  5. Sep 13, 2018 #4
    I have rather what is a dumb (related) question (probably related to analysis). Consider a set of real (or rational) numbers placed on ##\mathbb{N}^2## grid. Call the n-th horizontal line ##h_n## and the n-th vertical line ##v_n##.
    ##h_n:=(0,n),(1,n),(2,n),(3,n),(4,n).....##
    ##v_n:=(n,0),(n,1),(n,2),(n,3),(n,4).....##

    Does it matter if:
    (1) we add the numbers in ##h_0##. If they converge, then call it ##r_0##. Then we add all the numbers in ##h_1##. If they converge, then call it ##r_1##. If all the horizontal lines converge, then we make the sum: ##r_0+r_1+r_2,.....##. If this converges then we call this number ##H##.

    (2) Same as (1) except we along vertical lines. If everything turns out convergent we call the resulting number ##V##.

    (3) We make a sum of all the numbers using some elementary encoding function. If the sum turns out convergent, we call it ##E##.

    How are H,V and E are related generally (if they are)?
     
  6. Sep 13, 2018 #5

    Mark44

    Staff: Mentor

    It's unclear to me what you're trying to say here. Do the expressions such as (3, n) represent the rational number ##\frac 3 n##? If these are instead real numbers, how does an expression such as (3, n) map to a real number.

    Supposing these are rational numbers, does adding, say, row 2, ##\frac 0 2 + \frac 1 2 + \frac 2 2 + \dots + \frac 4 2 + \dots## have even a chance of converging?
    Going down a column, you have what is essentially a harmonic series, which is known to diverge.

     
  7. Sep 13, 2018 #6
    Sorry I wasn't precise enough. This isn't what I intended. What I imagined was "arbitrary" real/rational numbers placed on each position corresponding to ω2.

    So, for example, denote the (unique) real number that is placed at each position corresponding to some α<ω2 as R(α).

    So this is what (1) in post#4 will translate to:
    Consider the sum ##R(0)+R(1)+R(2).......##. Is it convergent or not? If it is then call it ##r_0##.
    Now consider the sum ##R(\omega)+R(\omega+1)+R(\omega+2).......##. Is it convergent or not? If it is then call it ##r_1##.
    Now consider the sum ##R(\omega \cdot 2)+R(\omega \cdot 2+1)+R(\omega \cdot 2+2).......##. Is it convergent or not? If it is then call it ##r_2##.
    and so on......

    If all the individual ##r_i##'s (##i \in \mathbb{N}##) are convergent then consider the sum:
    ##r_0+r_1+r_2+r_3+......##
    If this is convergent too then call it ##H##.

    =========================

    For example, now we can ask the relation between the following propositions:
    p: ##H## is convergent
    q: ##V## is convergent
    r: ##E## is convergent

    And ask about truth value of:
    If ##H## and ##V## are both convergent then we always have ##H=V##

    and so on.
     
  8. Sep 13, 2018 #7

    mfb

    User Avatar
    2017 Award

    Staff: Mentor

    You need absolute convergence, otherwise it doesn't work and you can get different results.
     
  9. Sep 13, 2018 #8
    Any specific and easily described example where H and V both exist but are different from each other?
     
  10. Sep 13, 2018 #9

    mfb

    User Avatar
    2017 Award

    Staff: Mentor

    I don't have a nice example now. It is easy to construct examples where e.g. the row sums diverge but the column sums do not, of course.
     
  11. Sep 13, 2018 #10
    Actually, that would also be of some independent interest separately I think (in addition to the one mentioned in post#8 and perhaps others**).

    ** By others I mean the combination of possibilities such as ones that could occur in post#6
     
  12. Sep 13, 2018 #11

    Stephen Tashi

    User Avatar
    Science Advisor

    Some notation in search of a definition:

    ##\begin{matrix} 1&+&(-1/2)&+&{1/3}&+&(-1/4)&+& (1/5)&+&{ ...} \\
    + & \ & + & \ &+ & \ &+ &\ & + & \ & {...} \ \\
    (-1/2)&+&1/3 &+&(-1/4)&+& (1/5)&+&(-1/6) &+ &{ ...}\\
    + & \ & + & \ &+ & \ &+ &\ &+ &\ &+ & {...} \\
    1/3 &+&(-1/4)&+& (1/5)&+&{ ...} & \ & {...} & \ & {...}\\
    + & \ & + & \ &+ & \ &+ &\ & {...} \ \\
    {...}& \ & {...} & \ &{...} & \ &{...} & \ & {...}
    \end{matrix}##
     
  13. Sep 14, 2018 #12

    Stephen Tashi

    User Avatar
    Science Advisor

  14. Sep 17, 2018 at 9:23 AM #13
    It is not that expert accept the "..." notation whithout explanation but rather that the experts are writing there work for either other experts who already know the explantion at assume it implicitlyan already consider it to be common knowlege or for student who are learning the material in order to become experts and need to become familiar with the notation of the feild. The reason we ask for clarification for the ".999..." notation is that newcomers must learn to understand this distinction.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted