An Easy Metric for Einstein Field Equations

edgepflow
Messages
688
Reaction score
1
So I am an engineering graduate trying to teach myself some general relativity.

I have tried to solve the Einstein Field equations for a wormhole metric and some others.

After pages and pages of calculating Christoffel Symbols, Riemann Tensors, Ricci Tensors and Scalars, and so on, I end up with a mess that is not correct.

Is there a simple metric(s) I could start with that is less messy?
 
Physics news on Phys.org
edgepflow said:
So I am an engineering graduate trying to teach myself some general relativity.

I have tried to solve the Einstein Field equations for a wormhole metric and some others.

After pages and pages of calculating Christoffel Symbols, Riemann Tensors, Ricci Tensors and Scalars, and so on, I end up with a mess that is not correct.

Is there a simple metric(s) I could start with that is less messy?

One of the easiest metrics to begin with is the spherically symmetric metric that leads to the Schwarzschild solution. Another relatively easy metric, but not quite as easy algebraically is the axi-symmetric metric that leads to the Weyl solution. As the previous post indicates, using computer algebra programs is a nice way to go. However, my experience is that there is some benefit to doing a few derivations out the long hard way. What you can learn is to see patterns in the symbols that allow cancellations and subsequently neat, pretty equations. I don't know if computer algebra programs are as adept at this as the human mind. Of course, I may be a little old fashioned that way... :).

Allan
 
Thank you for the posts.

I downloaded the links. I have heard of GRTensor for mathmaticia. Is there anything like this available for MathCAD?

Please help me check that I have some basics straight.

For a coordinate basis (t,u,v,w), the Ricci Scalar is:

R = g^tt Rtt + g^uu Ruu + g^vv Rvv + g^ww R ww

The Einstein Tensor is:

Gtt = Rtt - (1/2) R gtt
Guu = Ruu - (1/2) R guu
Gvv = Rvv - (1/2) R gvv
Gww = Rww - (1/2) R gww

With no other terms included in each term.

The Field equations are now:

Gtt = 8 Pi G Ttt
Guu = 8 Pi G Tuu
Gvv = 8 Pi G Tvv
Gww = 8 Pi G Tww

With no other terms for each coordinate.

Let me know if I have these basics straight.
 
Those equations look right for an orthogonal metric.

If you want to work out an earsy example by hand, try this

<br /> ds^2=-dt^2+a(t)(dx^2+dy^2+dz^2)<br />

0&lt;t&lt;\infty,\ \ \ -\infty&lt;x,y,z&lt;\infty<br />

which is a variant of the Robertson-Walker metric.

The Christoffel symbols are

<br /> {\Gamma^t}_{xx}={\Gamma^t}_{yy}={\Gamma^t}_{zz}= \frac{\dot{a}}{2},\ \ \ {\Gamma^t}_{tx}={\Gamma^t}_{ty}={\Gamma^t}_{tz}= \frac{\dot{a}}{2a}<br />

The Einstein tensor components are

<br /> G_{tt}=\frac{3\,{\left( \dot{a}\right) }^{2}}{4\,{a}^{2}},\ \ \ G_{xx}=G_{yy}=G_{zz}= \frac{\left( \dot{a}\right) ^{2}-4a\ddot{a}}{4a}<br />

You should get some symbolic math program to do this for you - I can recommend Maxima if you don't have Maple or Mathematica.
 
Last edited:
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top