MHB An integral related to beta function

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\int^1_0 \frac{x^{r-1} (1-x)^{s-1}}{\left(ax+b(1-x)+c \right)^{r+s}}\, dx =\frac{\beta(r,s)}{ (a+c)^{r}(b+c)^{s}}$$
 
Last edited:
Mathematics news on Phys.org
Let $I$ denote the integral. It is obvious to see that
$$I=(b+c)^{-r-s} B(r,s) {\;}_2F_1 \left(\begin{matrix}r+s,r \\ r+s\end{matrix};\frac{b-a}{b+c} \right)\tag{1} $$
where $_2F_1(a,b;c;z)$ denotes the Hypergeometric Function. Using equation (67) of this page, we get
$$\begin{align*}
I &=(b+c)^{-r-s} B(r,s) {\;}_2F_1 \left(\begin{matrix}1,r \\ 1\end{matrix};\frac{b-a}{b+c} \right)
\\
&=B(r,s) (b+c)^{-r-s} \left(1-\frac{b-a}{b+c}\right)^{-r} \\
&=\frac{B(r,s)}{(a+c)^r(b+c)^s} \tag{2}
\end{align*}$$
 
Last edited:
Shobhit said:
Let $I$ denote the integral. It is obvious to see that
$$I=(b+c)^{-r-s} B(r,s) {\;}_2F_1 \left(\begin{matrix}r+s,r \\ r+s\end{matrix};\frac{b-a}{b+c} \right)\tag{1} $$
where $_2F_1(a,b;c;z)$ denotes the Hypergeometric Function. Using equation (67) of this page, we get
$$\begin{align*}
I &=(b+c)^{-r-s} B(r,s) {\;}_2F_1 \left(\begin{matrix}1,r \\ 1\end{matrix};\frac{b-a}{b+c} \right)
\\
&=B(r,s) (b+c)^{-r-s} \left(1-\frac{b-a}{b+c}\right)^{-r} \\
&=\frac{B(r,s)}{(a+c)^r(b+c)^s} \tag{2}
\end{align*}$$
I've wanted to say this for a long time. Would you please explain the "obvious" to me?

-Dan
 
topsquark said:
I've wanted to say this for a long time. Would you please explain the "obvious" to me?

-Dan

The integral wasn't initially written correctly.

It should be

$$ \int_{0}^{1} \frac{x^{r-1} (1-x)^{s-1}}{ \Big( ax + b(1-x) + c \Big)^{s+r}} \ dx = \int_{0}^{1} x^{r-1} (1-x)^{s-1} \Big( b+c + (a-b)x \Big)^{-(r+s)} \ dx $$

$$ = (b+c)^{-(r+s)} \int_{0}^{1} x^{s-1} (1-x)^{r-1} \Big(1+ \frac{a-b}{b+c} x \Big)^{-(r+s)} \ dx $$

$$= (b+c)^{-(r+s)} \int_{0}^{1} x^{s-1} (1-x)^{r-1} \Big(1- \frac{b-a}{b+c} x \Big)^{-(r+s)} \ dx$$Then relate it to Euler's integral representation of $ {}_{2}F_{1}(a,b;c,z) $.

That is, relate it to $ \displaystyle {}_{2}F_{1}(a,b;c,z) = \frac{1}{B(b,c-b)} \int_{0}^{1} x^{b-1} (1-x)^{c-b-1} (1-tx)^{-a} \ dx$.
 
Last edited:
Random Variable said:
The integral wasn't initially written correctly.

It should be

$$ \int_{0}^{1} \frac{x^{r-1} (1-x)^{s-1}}{ \Big( ax + b(1-x) + c \Big)^{s+r}} \ dx = \int_{0}^{1} x^{r-1} (1-x)^{s-1} \Big( b+c + (a-b)x \Big)^{-(r+s)} \ dx $$

Sorry guys for the confusion (Headbang) . I corrected it.
 
And without referring to equation (67),

$$ \ {}_{1}F_{2} \Big(r+s,r;r+s;\frac{b-a}{b+c} \Big) = {}_{1}F_{0} \Big(r;-;\frac{b-a}{a+c} \Big) = \sum_{n=0}^{\infty} \frac{\Gamma(r+n)}{\Gamma(r)} \Big( \frac{b-a}{b+c} \Big)^{n} \frac{1}{n!}$$

$$ = \sum_{n=0}^{\infty} \frac{(r+n-1)(r+n-2) \cdots (r)}{n!} \Big(\frac{b-a}{b+c} \Big)^{n} $$

$$ = \sum_{n=0}^{\infty} (-1)^{n} (-1)^{n} \frac{r(r+1) \cdots (r+n-1)}{n!} \Big(\frac{b-a}{b+c} \Big)^{n}$$

$$ = \sum_{n=0}^{\infty} (-1)^{n} \frac{(-r)(-r-1) \cdots (-r-n+1)}{n!} \Big( \frac{b-a}{b+c} \Big)^{n} $$

$$ = \sum_{n=0}^{\infty} (-1)^{n} \binom{-r}{n} \Big( \frac{b-a}{b+c} \Big)^{n} = \sum_{n=0}^{\infty} \binom{-r}{n}\Big( - \frac{b-a}{b+c} \Big)^{n} = \Big(1- \frac{b-a}{b+c} \Big)^{-r}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top