An integral related to beta function

Click For Summary
SUMMARY

The integral $$\int^1_0 \frac{x^{r-1} (1-x)^{s-1}}{\left(ax+b(1-x)+c \right)^{r+s}}\, dx$$ is proven to equal $$\frac{\beta(r,s)}{ (a+c)^{r}(b+c)^{s}}$$ when correctly expressed as $$\int_{0}^{1} \frac{x^{r-1} (1-x)^{s-1}}{ \Big( ax + b(1-x) + c \Big)^{s+r}} \, dx$$. The discussion emphasizes the importance of correctly formatting the integral and relates it to Euler's integral representation of the hypergeometric function ${}_{2}F_{1}(a,b;c,z)$. The corrected formulation allows for a clearer understanding of the relationship between the beta function and the integral.

PREREQUISITES
  • Understanding of beta functions and their properties
  • Familiarity with hypergeometric functions, specifically ${}_{2}F_{1}$
  • Knowledge of integral calculus, particularly definite integrals
  • Experience with gamma functions and their applications
NEXT STEPS
  • Study the properties of beta functions and their applications in calculus
  • Learn about hypergeometric functions and their relation to integrals
  • Explore Euler's integral representation and its significance in mathematical analysis
  • Investigate the use of gamma functions in evaluating integrals
USEFUL FOR

Mathematicians, students of advanced calculus, and researchers in mathematical analysis who are looking to deepen their understanding of integrals related to beta and hypergeometric functions.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\int^1_0 \frac{x^{r-1} (1-x)^{s-1}}{\left(ax+b(1-x)+c \right)^{r+s}}\, dx =\frac{\beta(r,s)}{ (a+c)^{r}(b+c)^{s}}$$
 
Last edited:
Physics news on Phys.org
Let $I$ denote the integral. It is obvious to see that
$$I=(b+c)^{-r-s} B(r,s) {\;}_2F_1 \left(\begin{matrix}r+s,r \\ r+s\end{matrix};\frac{b-a}{b+c} \right)\tag{1} $$
where $_2F_1(a,b;c;z)$ denotes the Hypergeometric Function. Using equation (67) of this page, we get
$$\begin{align*}
I &=(b+c)^{-r-s} B(r,s) {\;}_2F_1 \left(\begin{matrix}1,r \\ 1\end{matrix};\frac{b-a}{b+c} \right)
\\
&=B(r,s) (b+c)^{-r-s} \left(1-\frac{b-a}{b+c}\right)^{-r} \\
&=\frac{B(r,s)}{(a+c)^r(b+c)^s} \tag{2}
\end{align*}$$
 
Last edited:
Shobhit said:
Let $I$ denote the integral. It is obvious to see that
$$I=(b+c)^{-r-s} B(r,s) {\;}_2F_1 \left(\begin{matrix}r+s,r \\ r+s\end{matrix};\frac{b-a}{b+c} \right)\tag{1} $$
where $_2F_1(a,b;c;z)$ denotes the Hypergeometric Function. Using equation (67) of this page, we get
$$\begin{align*}
I &=(b+c)^{-r-s} B(r,s) {\;}_2F_1 \left(\begin{matrix}1,r \\ 1\end{matrix};\frac{b-a}{b+c} \right)
\\
&=B(r,s) (b+c)^{-r-s} \left(1-\frac{b-a}{b+c}\right)^{-r} \\
&=\frac{B(r,s)}{(a+c)^r(b+c)^s} \tag{2}
\end{align*}$$
I've wanted to say this for a long time. Would you please explain the "obvious" to me?

-Dan
 
topsquark said:
I've wanted to say this for a long time. Would you please explain the "obvious" to me?

-Dan

The integral wasn't initially written correctly.

It should be

$$ \int_{0}^{1} \frac{x^{r-1} (1-x)^{s-1}}{ \Big( ax + b(1-x) + c \Big)^{s+r}} \ dx = \int_{0}^{1} x^{r-1} (1-x)^{s-1} \Big( b+c + (a-b)x \Big)^{-(r+s)} \ dx $$

$$ = (b+c)^{-(r+s)} \int_{0}^{1} x^{s-1} (1-x)^{r-1} \Big(1+ \frac{a-b}{b+c} x \Big)^{-(r+s)} \ dx $$

$$= (b+c)^{-(r+s)} \int_{0}^{1} x^{s-1} (1-x)^{r-1} \Big(1- \frac{b-a}{b+c} x \Big)^{-(r+s)} \ dx$$Then relate it to Euler's integral representation of $ {}_{2}F_{1}(a,b;c,z) $.

That is, relate it to $ \displaystyle {}_{2}F_{1}(a,b;c,z) = \frac{1}{B(b,c-b)} \int_{0}^{1} x^{b-1} (1-x)^{c-b-1} (1-tx)^{-a} \ dx$.
 
Last edited:
Random Variable said:
The integral wasn't initially written correctly.

It should be

$$ \int_{0}^{1} \frac{x^{r-1} (1-x)^{s-1}}{ \Big( ax + b(1-x) + c \Big)^{s+r}} \ dx = \int_{0}^{1} x^{r-1} (1-x)^{s-1} \Big( b+c + (a-b)x \Big)^{-(r+s)} \ dx $$

Sorry guys for the confusion (Headbang) . I corrected it.
 
And without referring to equation (67),

$$ \ {}_{1}F_{2} \Big(r+s,r;r+s;\frac{b-a}{b+c} \Big) = {}_{1}F_{0} \Big(r;-;\frac{b-a}{a+c} \Big) = \sum_{n=0}^{\infty} \frac{\Gamma(r+n)}{\Gamma(r)} \Big( \frac{b-a}{b+c} \Big)^{n} \frac{1}{n!}$$

$$ = \sum_{n=0}^{\infty} \frac{(r+n-1)(r+n-2) \cdots (r)}{n!} \Big(\frac{b-a}{b+c} \Big)^{n} $$

$$ = \sum_{n=0}^{\infty} (-1)^{n} (-1)^{n} \frac{r(r+1) \cdots (r+n-1)}{n!} \Big(\frac{b-a}{b+c} \Big)^{n}$$

$$ = \sum_{n=0}^{\infty} (-1)^{n} \frac{(-r)(-r-1) \cdots (-r-n+1)}{n!} \Big( \frac{b-a}{b+c} \Big)^{n} $$

$$ = \sum_{n=0}^{\infty} (-1)^{n} \binom{-r}{n} \Big( \frac{b-a}{b+c} \Big)^{n} = \sum_{n=0}^{\infty} \binom{-r}{n}\Big( - \frac{b-a}{b+c} \Big)^{n} = \Big(1- \frac{b-a}{b+c} \Big)^{-r}$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K