An integration problem using trigonometric substitution

Click For Summary
The discussion revolves around solving the integral of the form ∫√(1+9y²) dy using trigonometric substitution. The substitution tan(θ) = 3y is proposed, leading to the transformation of the integral into ∫sec³(θ) dθ. Participants suggest various methods to proceed, including integration by parts and hyperbolic substitution, emphasizing the importance of flexibility in approach. Confusion arises regarding the integration of sec³(θ) and the proper handling of limits and identities. Ultimately, the conversation highlights the complexity of the integral and the need for a solid understanding of integration techniques.
  • #31
mech-eng said:
Now it seems that I can solve ##\sec^3\theta## hence I can solve the question. This is my result I have arrived at. Would you please check it?

##sec\theta=\frac {\sqrt {\frac13^2~+y^2}} {\frac13} ##

##\frac13\int sec^3\theta=\frac13 3\sqrt{{\frac13}^2+y^2}~~3y+\frac13 \frac12 ln |sec\theta+tan\theta|##

Substituting the values obtained and cancelling out,

##\frac13\int sec^3\theta=3\sqrt{\frac13^2+y^2}~~y+\frac16ln|\frac {\sqrt{\frac13^2+y^2}}{\frac13}|##

In the end, is this the solution?

P.S: When I asked this question, I thought this was a very straightforward and short question with a few easy steps.

Remember the integration constant C.

Here is what I get:##\frac{1}{3} \int sec^3(\theta) d\theta = \frac{1}{6} (9y \cdot \sqrt{(\frac{1}{3})^2 + y^2}## ##+ \ln \left|3 \big(\sqrt{(\frac{1}{3})^2 + y^2} + y) \right|)##+ C
 
  • Like
Likes ehild and mech-eng
Physics news on Phys.org
  • #32
mech-eng said:
Now it seems that I can solve ##\sec^3\theta## hence I can solve the question. This is my result I have arrived at. Would you please check it?

##sec\theta=\frac {\sqrt {\frac13^2~+y^2}} {\frac13} ##

##\frac13\int sec^3\theta=\frac13 3\sqrt{{\frac13}^2+y^2}~~3y+\frac13 \frac12 ln |sec\theta+tan\theta|##

Substituting the values obtained and cancelling out,

##\frac13\int sec^3\theta=3\sqrt{\frac13^2+y^2}~~y+\frac16ln|\frac {\sqrt{\frac13^2+y^2}}{\frac13}|##

In the end, is this the solution?

P.S: When I asked this question, I thought this was a very straightforward and short question with a few easy steps.

You can check it for yourself: just differentiate the "answer" and see if it delivers the original integrand. This is something that you should get in the habit of doing, every time.
 
  • #33
The original problem
##\int\sqrt{1+9y^2}dy##
can be solved without any substitution , just integrating by parts:
##\int{\sqrt{1+9y^2}(1)dy}=\sqrt{1+9y^2}y-\int{\frac {9y^2}{\sqrt{1+9y^2}}dy}##
Add and subtract 1 to the numerator of the fraction in the integral, it decomposes into two terms, one is the original integral, the other integral is a basic one. :smile:
 
  • #34
ehild said:
The original problem
##\int\sqrt{1+9y^2}dy##
can be solved without any substitution , just integrating by parts:
##\int{\sqrt{1+9y^2}(1)dy}=\sqrt{1+9y^2}y-\int{\frac {9y^2}{\sqrt{1+9y^2}}dy}##
Add and subtract 1 to the numerator of the fraction in the integral, it decomposes into two terms, one is the original integral, the other integral is a basic one. :smile:

I don't understand what you do here mostly because there is no fraction in the original problem. It is just a square root of square of an expression of y.
 
Last edited:
  • #35
mech-eng said:
I don't understand what you do here mostly because there is no fraction in the original problem. It is just a square of an expression of y.
It is the integral in the second line.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
28
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K