MHB Angle Sum/Difference Identities: Billy's Pre-calc Math Problem

AI Thread Summary
The discussion revolves around solving a pre-calculus problem involving angle sum and difference identities for tangent. Given cos(a) = 15/17 and csc(B) = 41/9, the tangent values for angles a and B are calculated as tan(a) = 8/15 and tan(B) = 9/40, respectively. Using the tangent identities, the results for tan(a + B) and tan(a - B) are found to be 455/528 and 185/672. The solution emphasizes the application of Pythagorean identities to derive the necessary tangent values. This discussion serves as a resource for those seeking help with similar trigonometry problems.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Pre-calc math problem?

a and B are quadrent I angles with cos(a) = 15/17 and csc(B) = 41/9.

find tan (a + B) and tan (a-B)

Here is a link to the question:

Pre-calc math problem? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: Billy's question from Yahoo! Answers involving the angle sum/difference identities for tangent

Hello Billy,

We are given:

$$\cos(\alpha)=\frac{15}{17}$$

and using the Pythagorean identity $\tan^2(\alpha)=\sec^2(\alpha)-1$ we find (given $\alpha$ is in the first quadrant, and so all trig. functions are positive there:

$$\tan(\alpha)=\sqrt{\left(\frac{17}{15} \right)^2-1}=\frac{8}{15}$$

We are also given:

$$\csc(\beta)=\frac{41}{9}$$

and using the Pythagorean identity $\cot^2(\beta)=\csc^2(\beta)-1$ we find:

$$\tan(\beta)=\frac{1}{\cot(\beta)}=\frac{1}{ \sqrt{\left(\frac{41}{9} \right)^2-1}}=\frac{9}{40}$$

Now, using the angle sum/difference identity for tangent $$\tan(\alpha\pm\beta)=\frac{\tan(\alpha)\pm\tan( \beta)}{1\mp\tan(\alpha)\tan( \beta)}$$, we find:

$$\tan(\alpha+\beta)=\frac{\frac{8}{15}+\frac{9}{40}}{1-\frac{8}{15}\cdot\frac{9}{40}}=\frac{455}{528}$$

$$\tan(\alpha-\beta)=\frac{\frac{8}{15}-\frac{9}{40}}{1+\frac{8}{15}\cdot\frac{9}{40}}= \frac{185}{672}$$

To Billy and any other visitors reading this topic, I invite you to register and post other trigonometry questions in our http://www.mathhelpboards.com/f12/ forum.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top