Angular Motion Of A Bullet Striking A Door

  1. The problem is:

    "A 0.00600-kg bullet traveling horizontally with a speed of 1.00*103 m/s enters an 19.2-kg door, imbedding itself 8.60 cm from the side opposite the hinges as in the figure below. The 1.00-m wide door is free to swing on its frictionless hinges.

    (a) Before it hits the door, does the bullet have angular momentum relative the door's axis of rotation? Yes? No?

    (b) If so, evaluate this angular momentum. (If not, enter zero.)

    (c) Is mechanical energy of the bullet-door system constant in this collision? Yes? No? (Answer without doing a calculation.)

    (d) At what angular speed does the door swing open immediately after the collision?

    (e) Calculate the energy of the bullet-door system and determine whether it is less than or equal to the kinetic energy of the bullet before the collision."

    I think I will be able to solve parts (d) and (e).

    For (a), the answer is yes, but I can't quite figure out why the answer is yes.

    For (c), the answer is no; but I am having trouble understanding how we can possibly know. Couldn't the kinetic energy of the bullet be completely absorbed as kinetic energy in the door? In this scenario, wouldn't mechanical energy be conserved?

    Attached Files:

  2. jcsd
  3. Doc Al

    Staff: Mentor

    How is the angular momentum of a particle defined?

    When the colliding objects end up merged and traveling together, that is a perfectly inelastic collision. You can show (using conservation of momentum) that mechanical energy cannot be conserved. Only when they bounce off each other can energy be conserved.
  4. Angular momentum of a particle is found to be the product linear momentum of the particle and the particle's distance from the axis of rotation. Yes, I see now. I do have another question, however; for part (d), how do I calculate the momentum of inertia of the door?
  5. Doc Al

    Staff: Mentor

    You can treat it like a thin rod.
  6. I don't have the entire length of the door, though.
  7. Doc Al

    Staff: Mentor

    Use the 'width' of the door, which is given.
  8. Okay, I got parts (b), (d), and (e) wrong.

    Part (b): [itex]L=(0.00400~kg)(1.00\cdot 10^3~m/s)(8.10\cdot 10^{-2}~m)=0.324~kg\cdot m^2/s[/itex]

    For (d), [itex]L_i=L_f \rightarrow (0.324~kg\cdot m^2/s)+0=[(0.00400~kg)((8.10\cdot 10^{-2}~m/s)^2+1/3(15.8)(1.00~m)^2] \omega \rightarrow \omega = 0.0615~rad/s[/itex]

    For (e), I solved for the initial kinetic energy, and got it right; but I apparently didn't properly solve the final kinetic energy: [itex]K_f=1/2(0.00400~kg)((8.10\cdot 10^{-2}~m/s)^2+1/3(15.8)(1.00~m)(0.0615~rad/s)^2= 0.00997 J[/itex]
    Last edited: Dec 13, 2012
  9. Doc Al

    Staff: Mentor

    I don't understand what are doing here. What's the momentum of the bullet? How far is it from the axis?
  10. 0.081 m, right? I accidentally put units of velocity with that number.
  11. Doc Al

    Staff: Mentor

    That's not right. How did you determine that distance?
  12. Well, in the problem it states that the bullet is embedded into the door at a distance of 8.60 cm from the hinges from the door, so I took that to be the distance...Oh, I calculated 8.1 cm...Was that the error?
    Last edited: Dec 13, 2012
  13. Doc Al

    Staff: Mentor

    The bullet hits 8.60 cm from the side opposite the hinges (see the figure). What's the distance to the axis?
  14. Oh, 8.60 cm is the distance from where the bullet hits the door to the edge of the door not containing the hinges? If that's the case, I wouldn't know the other distance.
  15. Doc Al

    Staff: Mentor

    You have the width of the door.
  16. But how is that the distance from the axis of rotation (hinges) to the other end of the door?
  17. SammyS

    SammyS 7,900
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    How wide is the door ?
  18. 1.0 m, and then it's length is 8.60 m plus the distance beyond the bullet.
  19. SammyS

    SammyS 7,900
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    The door is 1 meter wide. Therefore the far edge of the door is 1 meter from the edge with the hinges.

    How far is the bullet from the hinges?

    (The figure is from a perspective looking down on the door.)
    Last edited: Dec 14, 2012
  20. Oh, I see. I thought that the 1.0 m was how thick it was (width); it's the length of it.
  21. I SOLVED IT!!!! Thank you both for your help!!!!
Know someone interested in this topic? Share a link to this question via email, Google+, Twitter, or Facebook