MHB Another supremum and infimum problem

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Supremum
alexmahone
Messages
303
Reaction score
0
Let $S$ and $T$ be non-empty subsets of $\mathbb{R}$, and suppose that for all $s\in S$ and $t\in T$, we have $s\le t$. Prove that $\sup S\le\inf T$.
 
Physics news on Phys.org
Alexmahone said:
Let $S$ and $T$ be non-empty subsets of $\mathbb{R}$, and suppose that for all $s\in S$ and $t\in T$, we have $s\le t$. Prove that $\sup S\le\inf T$.
Clearly $ \inf(T)$ & $\sup(S) $ exist. WHY?

$\forall s\in S$ we know $s\le\inf(T)~.$ WHY?$
 
Last edited:
Plato said:
Clearly $ \inf(T)$ & $\sup(S) $ exist. WHY?

Because $S$ and $T$ are non-empty subsets of $\mathbb{R}$.

$\forall s\in S$ we know $s\le\inf(T)~.$ WHY?

I don't know. Why?
 
Alexmahone said:
I don't know. Why?
Well every $s\in S$ is a lower bound for $T$.
Therefore $s\le\inf(T)$.
 
Plato said:
Well every $s\in S$ is a lower bound for $T$.
Therefore $s\le\inf(T)$.

So if $\sup S>\inf T$, there must be an $s\in S$ such that $s>\inf T$. (Otherwise, $\inf T$ is a smaller upper bound for $S$ than $\sup S$.) So we get a contradiction. (Is that correct?)
 
Alexmahone said:
So if $\sup S>\inf T$, there must be an $s\in S$ such that $s>\inf T$. (Otherwise, $\inf T$ is a smaller upper bound for $S$ than $\sup S$.) So we get a contradiction. (Is that correct?)
Yes. It is correct.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top