Hi, I have a problem solving this question, I don't know if I am on the correct track for solving this. Suppose that the sum of the surfaces of a sphere and a cube is constant. Show that the sum of their volumes is smallest when the diameter of the sphere is equal to the length of an edge of the cube.(adsbygoogle = window.adsbygoogle || []).push({});

Let x = length of an edge of the cube. r= radius of the sphere and V = total volume. S= total surface area. Then, [tex] V=\frac{4}{3} \pi r^3 + x^3 [/tex]

[tex] S=4\pi r^2 + 6x^2 [/tex] => [tex] x^2=\frac{S-4\pi r^2}{6} [/tex] =>

[tex] x^6=(\frac{S}{6}-\frac{2}{3} \pi r^2)^3[/tex]

=> [tex] x^3=\sqrt{(\frac{S}{6}-\frac{2}{3} \pi r^2)^3}[/tex]. It follows from this that [tex] V=\frac{4}{3} \pi r^3 + \sqrt{(\frac{S}{6}-\frac{2}{3} \pi r^2)^3}[/tex]. This looks like an unyieldy equation. I have yet to differentiate V w.r.t. r, and put V'(r)=0. Do I expand it using the Binomial Theorem or am I totally wrong in my approach to the question? Thanks for the help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Applied problem using absolute extrema

**Physics Forums | Science Articles, Homework Help, Discussion**