Are fundamental particles singularities in the general relativistic sense?

  • Thread starter Thread starter JDude13
  • Start date Start date
  • Tags Tags
    Density Infinite
JDude13
Messages
95
Reaction score
0
Point particles have mass.
Point particles are dimensionless.
Would it stand to reason that point particles are infinitely dense and, thus, singularities?
 
Physics news on Phys.org
It would, which is why point particles don't exist in reality, but are simply abstractions so we can simplify our calculations.

Real particles are quantically "smeared" across a given volume of space, which makes their density finite, but you're better off asking about it in the quantum mechanics forum.
 
FAQ: Is a fundamental particle a singularity in the general relativistic sense?
No. If it was, it would be a black-hole singularity. But it is believed that microscopic black holes would evaporate into photons, whereas electrons, for example, do not seem to. The time a black hole takes to evaporate becomes shorter as the black hole gets smaller. When the black hole has a mass equal to the Planck mass, which is about 22 micrograms, the lifetime becomes on the order of the Planck time (or a few thousand times greater). All known fundamental particles have masses many orders of magnitude less than the Planck mass, so there is no way they could have long lifetimes if they were black holes.
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Replies
167
Views
6K
Replies
26
Views
2K
Replies
6
Views
2K
Replies
25
Views
3K
Replies
7
Views
2K
Replies
118
Views
10K
Back
Top