Are the following PDEs linear or nonlinear?

Thomas Moore
Messages
12
Reaction score
2
Hi. I'm a bit confused on determining whether a certain PDE is linear or non-linear.

For example, for the wave equation, we have: u_{xx} + u_{yy} = 0, where a subscript denotes a partial derivative.
So, my textbook says to write:
$L = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

And then it is easy to deduce that $L(u+v) = L(u) + L(v)$ and $L(c u) = cL(u)$.

But, I have no idea how to do this for the following PDEs:
1. $u_{t} - u_{xx} + u/x = 0$, the $u/x$ is throwing me off.
2. $u_{tt} - u_{xx} + u^3 = 0$, the $u^3$ term is throwing me off.
I don't know how to write this as $Lu = 0$, to determine linearity. Any help would be appreciated, thanks!
 
Physics news on Phys.org
Hi. That link was quite helpful. Well, this is where I got stuck though.

For the first example, I wrote:
1. $L = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} + 1/x$, which seems to work if you do $L u$. But, I'm not sure if adding 1/x is right like that.

2. But for this one, I have no idea! I want to write: $L = \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial x^2} $ plus something, but I don't know how to write this so Lu will give the u^3 term at the end!
 
When choosing your operator, you can let ( )^3 be in your operator expression. E.g. if G is the cubic operator, then G(2)=8. The cubic operator (the operator which cubes its input) is not linear, but that doesn't mean we can't define it.
 
If you double up the dollar signs, the TeX will render properly.
BrianT is correct ... the naive way would have been just to write it out as if you just divided through by u.
You should not be afraid to try out stuff.
 
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Back
Top