Are these semidirect products of groups isomorphic?

Click For Summary
The discussion centers on whether the semidirect products G(1) and G(2), defined using different homomorphisms from C_2 to Aut(C_3 × C_3), are isomorphic. Calculations show that G(1) behaves like the binary dihedral group D_6, while G(2) is isomorphic to the direct product C_3 × C_2. Consequently, G(1) and G(2) are not isomorphic due to their differing structures, specifically one being abelian and the other non-abelian. The participants also explore the correct representation of group elements and operations, confirming that G(1) and G(2) indeed have different properties. Ultimately, the conclusion is that G(1) is not isomorphic to G(2).
pondzo
Messages
168
Reaction score
0

Homework Statement



Write ##C_3\langle x|x^3=1\rangle## and ##C_2=\langle y|y^2=1\rangle##
Let ##h_1,h_2:C_2\rightarrow \text{ Aut}(C_3\times C_3)## be the following homomorphisms:
$$h_1(y)(x^a,x^b)=(x^{-a},x^{-b})~;~~~~~~h_2(y)(x^a,x^b)=(x^b,x^a)$$
Put ##G(1)=(C_3\times C_3)\rtimes_{h_1}C_2 \text{ and } G(2)=(C_3\times C_3)\rtimes_{h_2}C_2##

Is ##G(1)\cong G(2)##? If so write down an explicit isomorphism. If not, explain why not.

Homework Equations



I think the group operation for this semidirect products is:
$$\cdot ~:~(C_3\times C_3)\rtimes_{h_i}C_2~~~~~~~i=\{1,2\}$$ $$ \text{ Where } ((x_1,x_2),y)\cdot ((x_1',x_2'),y')=((x_1,x_2)h(y)(x_1',x_2'),yy')$$ $$ \text{ for } ((x_1,x_2),y),((x_1',x_2'),y')\in (C_3\times C_3)\rtimes_{h_i}C_2$$

The Attempt at a Solution



First of all, I'm not too sure if I have the elements in each group in the correct form or if I defined the group operation correctly. Assuming I have done these two things correctly, I will continue with my attempt of a solution.

Write ##C_3\times C_3=\langle x_1,x_2|x_1^3=x_2^3=1, x_2x_1=x_1x_2\rangle##.
Let ##Y=((1,1),y)## and ##X=((x_1,x_2),1)##
I will now do the crucial calculation, ##YX##, in both G(1) and G(2):

Crucial calculation in ##G(1)##:
##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=(((x_1)^{-1},(x_2)^{-1}),y)=(((x_1)^2,(x_2)^2),y)=X^2Y##
Thus ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle\cong D_6 ## (Binary dihedral group of order 6)

Crucial calculation in ##G(2)##:
##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=((x_1,x_2),y)=XY##
Thus ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle \cong C_3\times C_2##

So ##G(1)\ncong G(2)##.

I am not sure If my final conclusions about G(1) and G(2) are correct. I.e. I'm not sure if I can write ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle## and ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle##
 
Physics news on Phys.org
pondzo said:

Homework Statement



Write ##C_3\langle x|x^3=1\rangle## and ##C_2=\langle y|y^2=1\rangle##
Let ##h_1,h_2:C_2\rightarrow \text{ Aut}(C_3\times C_3)## be the following homomorphisms:
$$h_1(y)(x^a,x^b)=(x^{-a},x^{-b})~;~~~~~~h_2(y)(x^a,x^b)=(x^b,x^a)$$
Put ##G(1)=(C_3\times C_3)\rtimes_{h_1}C_2 \text{ and } G(2)=(C_3\times C_3)\rtimes_{h_2}C_2##

Is ##G(1)\cong G(2)##? If so write down an explicit isomorphism. If not, explain why not.

Homework Equations



I think the group operation for this semidirect products is:
$$\cdot ~:~(C_3\times C_3)\rtimes_{h_i}C_2~~~~~~~i=\{1,2\}$$ $$ \text{ Where } ((x_1,x_2),y)\cdot ((x_1',x_2'),y')=((x_1,x_2)h(y)(x_1',x_2'),yy')$$ $$ \text{ for } ((x_1,x_2),y),((x_1',x_2'),y')\in (C_3\times C_3)\rtimes_{h_i}C_2$$

The Attempt at a Solution



First of all, I'm not too sure if I have the elements in each group in the correct form or if I defined the group operation correctly. Assuming I have done these two things correctly, I will continue with my attempt of a solution.

Write ##C_3\times C_3=\langle x_1,x_2|x_1^3=x_2^3=1, x_2x_1=x_1x_2\rangle##.
Let ##Y=((1,1),y)## and ##X=((x_1,x_2),1)##
I will now do the crucial calculation, ##YX##, in both G(1) and G(2):

Crucial calculation in ##G(1)##:
##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=(((x_1)^{-1},(x_2)^{-1}),y)=(((x_1)^2,(x_2)^2),y)=X^2Y##
Thus ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle\cong D_6 ## (Binary dihedral group of order 6)

Crucial calculation in ##G(2)##:
##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=((x_1,x_2),y)=XY##
Thus ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle \cong C_3\times C_2##

So ##G(1)\ncong G(2)##.

I am not sure If my final conclusions about G(1) and G(2) are correct. I.e. I'm not sure if I can write ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle## and ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle##

I've checked everything and it is correct. G(1) and G(2) are correctly represented and identified.
(At least I've found nothing wrong and I even checked whether the normal subgroup is on the correct side of ##\rtimes##.)
 
Aren't ##G(1)## and ##G(2)## supposed to have ##18## elements? Why do you suddenly conclude they have ##6## elements?
 
micromass said:
Aren't ##G(1)## and ##G(2)## supposed to have ##18## elements? Why do you suddenly conclude they have ##6## elements?

Upon further consideration I agree with you. I think my conclusions had something to do with how I represented the generators of the ##(C_3\times C_3)## part of the semidirect product. Would it be correct to denote ##X_1=((x,1),1)## and ##X_2=((1,x),1)## and then do the crucial calculations ##YX_1## and ##YX_2## in both G(1) and G(2)?

So, the crucial calculations in G(1) would be:
##YX_1=((1,1),y)\cdot((x,1),1)=((1,1)h(y)(x,1),y1)=((x^{-1},1),y)=((x^2,1),y)=X_1^2Y##
##YX_2=((1,1),y)\cdot((1,x),1)=((1,1)h(y)(1,x),y1)=((1,x^{-1}),y)=((1,x^2),y)=X_2^2Y##
Thus ##G(1)\cong \langle X_1,X_2,Y|X_1^3=X_2^3=Y^2=1,YX_1=X_1^2Y,YX_2=X_2^2Y,X_2X_1=X_1X_2 \rangle\cong ??## (Is there a name for this?)

And the crucial calculations in G(2) would be:
##YX_1=((1,1),y)\cdot((x,1),1)=((1,1)h(y)(x,1),y1)=((x,1),y)=X_1Y##
##YX_2=((1,1),y)\cdot((1,x),1)=((1,1)h(y)(1,x),y1)=((1,x),y)=X_2Y##
Thus ##G(1)\cong \langle X_1,X_2,Y|X_1^3=X_2^3=Y^2=1,YX_1=X_1Y,YX_2=X_2Y,X_2X_1=X_1X_2 \rangle\cong C_3\times C_3 \times C_2##

And so ##G(1)\ncong G(2)## since one of these groups is abelian and the other isn't.
 
pondzo said:
Upon further consideration I agree with you. I think my conclusions had something to do with how I represented the generators of the ##(C_3\times C_3)## part of the semidirect product. Would it be correct to denote ##X_1=((x,1),1)## and ##X_2=((1,x),1)## and then do the crucial calculations ##YX_1## and ##YX_2## in both G(1) and G(2)?

So, the crucial calculations in G(1) would be:
##YX_1=((1,1),y)\cdot((x,1),1)=((1,1)h(y)(x,1),y1)=((x^{-1},1),y)=((x^2,1),y)=X_1^2Y##
##YX_2=((1,1),y)\cdot((1,x),1)=((1,1)h(y)(1,x),y1)=((1,x^{-1}),y)=((1,x^2),y)=X_2^2Y##
Thus ##G(1)\cong \langle X_1,X_2,Y|X_1^3=X_2^3=Y^2=1,YX_1=X_1^2Y,YX_2=X_2^2Y,X_2X_1=X_1X_2 \rangle\cong ??## (Is there a name for this?)
No. It's simply the direct product of the symmetric group ##S_3 ≅ D_3## with ##C_3##. (You denoted ##D_3## as ##D_6##.)

And the crucial calculations in G(2) would be:
##YX_1=((1,1),y)\cdot((x,1),1)=((1,1)h(y)(x,1),y1)=((x,1),y)=X_1Y##
##YX_2=((1,1),y)\cdot((1,x),1)=((1,1)h(y)(1,x),y1)=((1,x),y)=X_2Y##
Thus ##G(1)\cong \langle X_1,X_2,Y|X_1^3=X_2^3=Y^2=1,YX_1=X_1Y,YX_2=X_2Y,X_2X_1=X_1X_2 \rangle\cong C_3\times C_3 \times C_2##

And so ##G(1)\ncong G(2)## since one of these groups is abelian and the other isn't.
I would have concluded with the normal subgroups ##<YX>## you defined in the first place.
If ##G(1)## and ##G(2)## were isomorphic, you could consider the quotient groups and the fact there is only one group of order three.
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
816
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
12
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K