1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Are these semidirect products of groups isomorphic?

Tags:
  1. May 7, 2016 #1
    1. The problem statement, all variables and given/known data

    Write ##C_3\langle x|x^3=1\rangle## and ##C_2=\langle y|y^2=1\rangle##
    Let ##h_1,h_2:C_2\rightarrow \text{ Aut}(C_3\times C_3)## be the following homomorphisms:
    $$h_1(y)(x^a,x^b)=(x^{-a},x^{-b})~;~~~~~~h_2(y)(x^a,x^b)=(x^b,x^a)$$
    Put ##G(1)=(C_3\times C_3)\rtimes_{h_1}C_2 \text{ and } G(2)=(C_3\times C_3)\rtimes_{h_2}C_2##

    Is ##G(1)\cong G(2)##? If so write down an explicit isomorphism. If not, explain why not.

    2. Relevant equations

    I think the group operation for this semidirect products is:
    $$\cdot ~:~(C_3\times C_3)\rtimes_{h_i}C_2~~~~~~~i=\{1,2\}$$ $$ \text{ Where } ((x_1,x_2),y)\cdot ((x_1',x_2'),y')=((x_1,x_2)h(y)(x_1',x_2'),yy')$$ $$ \text{ for } ((x_1,x_2),y),((x_1',x_2'),y')\in (C_3\times C_3)\rtimes_{h_i}C_2$$

    3. The attempt at a solution

    First of all, i'm not too sure if I have the elements in each group in the correct form or if I defined the group operation correctly. Assuming I have done these two things correctly, I will continue with my attempt of a solution.

    Write ##C_3\times C_3=\langle x_1,x_2|x_1^3=x_2^3=1, x_2x_1=x_1x_2\rangle##.
    Let ##Y=((1,1),y)## and ##X=((x_1,x_2),1)##
    I will now do the crucial calculation, ##YX##, in both G(1) and G(2):

    Crucial calculation in ##G(1)##:
    ##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=(((x_1)^{-1},(x_2)^{-1}),y)=(((x_1)^2,(x_2)^2),y)=X^2Y##
    Thus ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle\cong D_6 ## (Binary dihedral group of order 6)

    Crucial calculation in ##G(2)##:
    ##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=((x_1,x_2),y)=XY##
    Thus ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle \cong C_3\times C_2##

    So ##G(1)\ncong G(2)##.

    I am not sure If my final conclusions about G(1) and G(2) are correct. I.e. i'm not sure if I can write ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle## and ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle##
     
  2. jcsd
  3. May 7, 2016 #2

    fresh_42

    Staff: Mentor

    I've checked everything and it is correct. G(1) and G(2) are correctly represented and identified.
    (At least I've found nothing wrong and I even checked whether the normal subgroup is on the correct side of ##\rtimes##.)
     
  4. May 7, 2016 #3

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    Aren't ##G(1)## and ##G(2)## supposed to have ##18## elements? Why do you suddenly conclude they have ##6## elements?
     
  5. May 7, 2016 #4
    Upon further consideration I agree with you. I think my conclusions had something to do with how I represented the generators of the ##(C_3\times C_3)## part of the semidirect product. Would it be correct to denote ##X_1=((x,1),1)## and ##X_2=((1,x),1)## and then do the crucial calculations ##YX_1## and ##YX_2## in both G(1) and G(2)?

    So, the crucial calculations in G(1) would be:
    ##YX_1=((1,1),y)\cdot((x,1),1)=((1,1)h(y)(x,1),y1)=((x^{-1},1),y)=((x^2,1),y)=X_1^2Y##
    ##YX_2=((1,1),y)\cdot((1,x),1)=((1,1)h(y)(1,x),y1)=((1,x^{-1}),y)=((1,x^2),y)=X_2^2Y##
    Thus ##G(1)\cong \langle X_1,X_2,Y|X_1^3=X_2^3=Y^2=1,YX_1=X_1^2Y,YX_2=X_2^2Y,X_2X_1=X_1X_2 \rangle\cong ??## (Is there a name for this?)

    And the crucial calculations in G(2) would be:
    ##YX_1=((1,1),y)\cdot((x,1),1)=((1,1)h(y)(x,1),y1)=((x,1),y)=X_1Y##
    ##YX_2=((1,1),y)\cdot((1,x),1)=((1,1)h(y)(1,x),y1)=((1,x),y)=X_2Y##
    Thus ##G(1)\cong \langle X_1,X_2,Y|X_1^3=X_2^3=Y^2=1,YX_1=X_1Y,YX_2=X_2Y,X_2X_1=X_1X_2 \rangle\cong C_3\times C_3 \times C_2##

    And so ##G(1)\ncong G(2)## since one of these groups is abelian and the other isn't.
     
  6. May 7, 2016 #5

    fresh_42

    Staff: Mentor

    No. It's simply the direct product of the symmetric group ##S_3 ≅ D_3## with ##C_3##. (You denoted ##D_3## as ##D_6##.)

    I would have concluded with the normal subgroups ##<YX>## you defined in the first place.
    If ##G(1)## and ##G(2)## were isomorphic, you could consider the quotient groups and the fact there is only one group of order three.
     
    Last edited: May 7, 2016
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Are these semidirect products of groups isomorphic?
  1. Semidirect product (Replies: 1)

Loading...