MHB Are These the Only Integer Solutions to $y^2 = x^4 + x^3 + x^2 + x + 1$?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Integer
AI Thread Summary
The discussion focuses on proving that the only integer solutions to the equation y^2 = x^4 + x^3 + x^2 + x + 1 are (-1, ±1), (0, ±1), and (3, ±11). Participants express confusion over the reasoning behind the number of roots and their independence from a variable k. One user shares their solution and invites others to elaborate on their own methods. The conversation also references Descartes' rule of signs as a potential tool for analysis. Overall, the thread emphasizes the search for a rigorous proof of the integer solutions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $(-1,\,\pm 1)$, $(0,\,\pm 1)$, $(3,\,\pm 11)$ are the only integers solution for the equation $y^2=x^4+x^3+x^2+x+1$.
 
Mathematics news on Phys.org
$x,y $ are integers
let :$y^2=x^4+x^3+x^2+x+1=k-----(1)$
here $k\in N$ ,and $k$ is a perfect square
we have :$(x-1)(x^4+x^3+x^2+x+1)=k(x-1)$
or $x^5-kx+k-1=0----(2)$
if $k=1$ then the solutions of (1):$(x,k)=(-1,1),(0,1),$and two complex conjugates
soluions of (2):$(x,k)=(-1,1),(0,1),(1,1) $ and two complex conjugates
if $k>1$ then the solutions of(1):1 positive , 1 negative and two complex conjugates(idependent of k)
the solutions of(2):2 positive , 1 negative and two complex conjugates
we are given :the solutins of (1):$(x,k)=(-1,1),(0,1),(3,121)$
and we have the soltions of (2):$(x,k)=(-1,1),(0,1),(3,121),(1,k)$
so $(x,y)=(-1,\pm 1),(0,\pm1),(3,\pm 11) $ are the only possible solutions
 
Last edited:
Hey Albert, I'm sorry because I can't see your point here, about how you deduced the number of roots and how they are independent of $k$...but I still want to thank you for attempting.

Without any further delay, I will share the solution that I have at hand here, I hope you and others will like it and perhaps, you want to explain to us more about your solution?

Suppose $(x,\,y)$ is a point with integer coordinates on the given curve.

From the facts that

$\left(x^2+\dfrac{x}{2}\right)^2=x^4+x^3+\dfrac{x^2}{4}=y^2-\dfrac{3x^2}{4}-x-1=y^2-\dfrac{3}{4}\left(x+\dfrac{2}{3}\right)^2-\dfrac{2}{3}<y^2$ and

$\left(x^2+\dfrac{x}{2}+1\right)^2=x^4+x^3+\dfrac{9x^2}{4}+x+1=y^2+\dfrac{5x^2}{4}\ge y$, we conclude that $x^2+\dfrac{x}{2}<|y| \le x^2+\dfrac{x}{2}+1$.

If $x$ is odd, then $|y|=x^2+\dfrac{x+1}{2}$ is the only integer in this interval and

$\begin{align*}y^2&=\left(x^2+\dfrac{x+1}{2}\right)^2\\&=x^4+x^3+x^2+\dfrac{x^2+2x+1}{4}\\&=x^4+x^3+x^2+x+1+\dfrac{x^2-2x-3}{4}\\&=y^2+\dfrac{(x-3)(x+1)}{4}\end{align*}$

It follows that $(x-3)(x+1)=0$ and so $x=3$ or $x=1$. This gives us the integer points $(3,\,\pm 11)$ and $(-1,\,\pm 1)$.

If $x$ is even, then $x^2+\dfrac{x}{2}<|y| \le x^2+\dfrac{x}{2}+1$ implies that $|y|=x^2+\dfrac{x}{2}+1$. Then $\left(x^2+\dfrac{x}{2}+1\right)^2=x^4+x^3+\dfrac{9x^2}{4}+x+1=y^2+\dfrac{5x^2}{4}\ge y$ implies that $y^2=y^2+\dfrac{5x^2}{4}$ and therefore $x=0$, giving us the integer points $(0,\,\pm 1)$ and so these are the only solutions.
 
Albert said:
$x,y $ are integers
let :$y^2=x^4+x^3+x^2+x+1=k-----(1)$
here $k\in N$ ,and $k$ is a perfect square
we have :$(x-1)(x^4+x^3+x^2+x+1)=k(x-1)$
or $x^5-kx+k-1=0----(2)$
if $k=1$ then the solutions of (1):$(x,k)=(-1,1),(0,1),$and two complex conjugates
soluions of (2):$(x,k)=(-1,1),(0,1),(1,1) $ and two complex conjugates
if $k>1$ then the solutions of(1):1 positive , 1 negative and two complex conjugates(idependent of k)
the solutions of(2):2 positive , 1 negative and two complex conjugates
we are given :the solutins of (1):$(x,k)=(-1,1),(0,1),(3,121)$
and we have the soltions of (2):$(x,k)=(-1,1),(0,1),(3,121),(1,k)$
so $(x,y)=(-1,\pm 1),(0,\pm1),(3,\pm 11) $ are the only possible solutions
explanation here:
Descartes' rule of signs - Wikipedia, the free encyclopedia
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top