Are These the Only Integer Solutions to $y^2 = x^4 + x^3 + x^2 + x + 1$?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Integer
Click For Summary

Discussion Overview

The discussion centers around the integer solutions to the equation \(y^2 = x^4 + x^3 + x^2 + x + 1\). Participants explore the validity of specific integer pairs as solutions and the reasoning behind determining the number of roots.

Discussion Character

  • Debate/contested

Main Points Raised

  • One participant claims that the only integer solutions are \((-1,\,\pm 1)\), \((0,\,\pm 1)\), and \((3,\,\pm 11)\).
  • Another participant expresses confusion regarding the reasoning behind the number of roots and their independence from a variable \(k\), indicating a lack of clarity in the initial argument presented.
  • A reference to Descartes' rule of signs is provided, suggesting a method for analyzing the polynomial's roots, but no specific application or conclusion is drawn from it in the discussion.

Areas of Agreement / Disagreement

Participants do not appear to reach a consensus on the integer solutions, as there is a clear expression of confusion and differing interpretations of the reasoning involved.

Contextual Notes

The discussion lacks detailed mathematical justification for the claims made, and the application of Descartes' rule of signs is not elaborated upon, leaving assumptions and steps unresolved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $(-1,\,\pm 1)$, $(0,\,\pm 1)$, $(3,\,\pm 11)$ are the only integers solution for the equation $y^2=x^4+x^3+x^2+x+1$.
 
Mathematics news on Phys.org
$x,y $ are integers
let :$y^2=x^4+x^3+x^2+x+1=k-----(1)$
here $k\in N$ ,and $k$ is a perfect square
we have :$(x-1)(x^4+x^3+x^2+x+1)=k(x-1)$
or $x^5-kx+k-1=0----(2)$
if $k=1$ then the solutions of (1):$(x,k)=(-1,1),(0,1),$and two complex conjugates
soluions of (2):$(x,k)=(-1,1),(0,1),(1,1) $ and two complex conjugates
if $k>1$ then the solutions of(1):1 positive , 1 negative and two complex conjugates(idependent of k)
the solutions of(2):2 positive , 1 negative and two complex conjugates
we are given :the solutins of (1):$(x,k)=(-1,1),(0,1),(3,121)$
and we have the soltions of (2):$(x,k)=(-1,1),(0,1),(3,121),(1,k)$
so $(x,y)=(-1,\pm 1),(0,\pm1),(3,\pm 11) $ are the only possible solutions
 
Last edited:
Hey Albert, I'm sorry because I can't see your point here, about how you deduced the number of roots and how they are independent of $k$...but I still want to thank you for attempting.

Without any further delay, I will share the solution that I have at hand here, I hope you and others will like it and perhaps, you want to explain to us more about your solution?

Suppose $(x,\,y)$ is a point with integer coordinates on the given curve.

From the facts that

$\left(x^2+\dfrac{x}{2}\right)^2=x^4+x^3+\dfrac{x^2}{4}=y^2-\dfrac{3x^2}{4}-x-1=y^2-\dfrac{3}{4}\left(x+\dfrac{2}{3}\right)^2-\dfrac{2}{3}<y^2$ and

$\left(x^2+\dfrac{x}{2}+1\right)^2=x^4+x^3+\dfrac{9x^2}{4}+x+1=y^2+\dfrac{5x^2}{4}\ge y$, we conclude that $x^2+\dfrac{x}{2}<|y| \le x^2+\dfrac{x}{2}+1$.

If $x$ is odd, then $|y|=x^2+\dfrac{x+1}{2}$ is the only integer in this interval and

$\begin{align*}y^2&=\left(x^2+\dfrac{x+1}{2}\right)^2\\&=x^4+x^3+x^2+\dfrac{x^2+2x+1}{4}\\&=x^4+x^3+x^2+x+1+\dfrac{x^2-2x-3}{4}\\&=y^2+\dfrac{(x-3)(x+1)}{4}\end{align*}$

It follows that $(x-3)(x+1)=0$ and so $x=3$ or $x=1$. This gives us the integer points $(3,\,\pm 11)$ and $(-1,\,\pm 1)$.

If $x$ is even, then $x^2+\dfrac{x}{2}<|y| \le x^2+\dfrac{x}{2}+1$ implies that $|y|=x^2+\dfrac{x}{2}+1$. Then $\left(x^2+\dfrac{x}{2}+1\right)^2=x^4+x^3+\dfrac{9x^2}{4}+x+1=y^2+\dfrac{5x^2}{4}\ge y$ implies that $y^2=y^2+\dfrac{5x^2}{4}$ and therefore $x=0$, giving us the integer points $(0,\,\pm 1)$ and so these are the only solutions.
 
Albert said:
$x,y $ are integers
let :$y^2=x^4+x^3+x^2+x+1=k-----(1)$
here $k\in N$ ,and $k$ is a perfect square
we have :$(x-1)(x^4+x^3+x^2+x+1)=k(x-1)$
or $x^5-kx+k-1=0----(2)$
if $k=1$ then the solutions of (1):$(x,k)=(-1,1),(0,1),$and two complex conjugates
soluions of (2):$(x,k)=(-1,1),(0,1),(1,1) $ and two complex conjugates
if $k>1$ then the solutions of(1):1 positive , 1 negative and two complex conjugates(idependent of k)
the solutions of(2):2 positive , 1 negative and two complex conjugates
we are given :the solutins of (1):$(x,k)=(-1,1),(0,1),(3,121)$
and we have the soltions of (2):$(x,k)=(-1,1),(0,1),(3,121),(1,k)$
so $(x,y)=(-1,\pm 1),(0,\pm1),(3,\pm 11) $ are the only possible solutions
explanation here:
Descartes' rule of signs - Wikipedia, the free encyclopedia
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
1K