Are You Ready to Challenge Your Integral Solving Skills?

  • Thread starter Thread starter Gib Z
  • Start date Start date
  • Tags Tags
    Integrals
Click For Summary
The discussion revolves around the request for indefinite integrals to challenge and improve integral solving skills. The original poster expresses difficulty with specific integrals, particularly involving sqrt(tan(x)) and the integral of 1/(2 + sin(x)). Participants suggest various substitution methods, including using tan(x/2) and u = tan(x), while also discussing integration techniques such as integration by parts and partial fractions. There is a focus on providing hints and guidance rather than direct solutions, fostering a collaborative learning environment. Overall, the thread emphasizes the importance of practice and community support in mastering calculus concepts.
  • #271
Gib Z said:
Was that aimed at me or rocophysics? I know I stink :( Whats a wine?
It was aimed at you, I've already spoiled :p
 
Physics news on Phys.org
  • #272
How good are YOU ?

Here are some of my favourite integrals, ranging from beginners to just no.
Some of these have been posted before, most have not. Have fun.

Have fun and gl

Easier problems at the top, harder problems at the bottom. I really love all of these

Easy

I \, = \, \int {\frac{x}{e^x}} dx
I \, = \, \int_0^{\frac{\pi }{3n}} \tan \left( {nx} \right) dx
I \, = \, \int \frac{x^2+1}{x(x^2+3)} dx
I \, = \, 1+\int_{229}^{1234} (\sin(x)+\cos(x))^2+(\cos(x)-\sin(x))^2 \, dx
I \, = \, \int {\frac{1}{x\ln x}} dx
I \, = \, \int {\frac{{{e^x} + 1}}{{{e^x} - 1}}} dx
I \, = \, \int \frac{\sin(x)}{\sin(x)-1} dx
I \, = \, \int {2^{\ln(x)}} dx
I \, = \, \int {{e^{x + {e^x}}}} dx
I \, = \, \int_0^4 {\frac{\ln \left( x \right)}{\sqrt x}} dx
I \, = \, \int {{e^{\sqrt x }}} dx
I \, = \, \int \frac{1}{x^7-x} dx
I \, = \, \int\limits_0^4 {\frac{1}{{1 + \sqrt x }}} dx
I \, = \, \int \frac{\cos \left( x \right) - \sin \left( x \right)}{\sin \left( x \right) + \cos \left( x \right)} \, dx
I \, = \, \int \frac{\sin(x)\cos(x)}{\cos(x)^4-\sin(x)^4} \, dx
I \, = \, \int \frac{\sqrt{\sqrt{\ln(x)}+1}}{x} dx
I \, = \, \int \frac{1}{1+\sin\left( \frac{\pi}{6} \right)^x} dx
I \, = \, \int {\frac{1}{x \ln{{\left( x \right)}^n}}} dx
I \, = \, \int {\frac{{x{e^x}}}{{{{\left( {x + 1} \right)}^2}}}} dx
I \, = \, \int \frac{2010}{x(1+x^{2010})} dx

Find the area between the function f(x) and the x-axis when f(x)=\sqrt{a-\sqrt{x}}

Show that \int \left( {x + 3} \right) \left( {x - 1} \right)^5 dx \: equals \: \frac{1}{21}\left( {3x + 11} \right){{\left( {x - 1} \right)}^6} + C

Medium

I \, = \, \int \sin(\ln(x)) + \cos(\ln(x)) dx
I \, = \, \int {\left( {1 + 2{x^2}} \right){e^{{x^2}}}} \, dx
I \, = \, \int \frac{\ln(x)-1}{\ln(x)^2} \, dx
I \, = \, \int_{\pi}^{3\pi} \sin(x)\ln(x) - \frac{\cos(x)}{x} \, dx
I \, = \, \int \frac{1}{\ln(x)}+\ln(\ln(x)) \, dx
I \, = \, \int (x+3) \sqrt{e^x \cdot x} dx
I \, = \, \int \arccos(x) + \arcsin(x) dx
I \, = \, \int \frac{1}{\cos(x)} dx
I \, = \, \int \frac{4(\ln x)^2+1}{(\ln x)^{\frac 32}}\ dx
I \, = \, \int \frac{1}{\sqrt[3]{x}+x}\, dx
I \, = \, \int \frac{\sin(x)+\sin(3x)}{\cos(3x)+\cos(x)} \, dx
I \, = \, \int \frac{1}{\sqrt{x+x\sqrt{x}}} \, dx
I \, = \, \int \sin(101x)\cdot\sin(99x) \, dx
I \, = \, \int {\frac{{\sqrt {x + 1} - \sqrt {x - 1} }}{{\sqrt {x + 1} + \sqrt {x - 1} }}} \, dx
I \, = \, \int_0^1 \frac{x}{1+x}\sqrt{1-x^2}\ dx
I \, = \, \int \frac{1}{x^{a+1}+x} \, dx \; a>0
I \, = \, \int \frac{2^x \cdot 3^x}{9^x- 4^x} \, dx
I \, = \, \int \frac{1 + 2x^2}{x^5 \left( 1 + x^2 \right)^3} \, dx
I \, = \, \int \frac{1}{\sqrt{5x+3}-\sqrt{5x-2}} \, dx
I \, = \, \int \frac{\sqrt{x+\sqrt{x^2+1}}}{\sqrt{x^2+1}}
I \, = \, \int_1^e \frac{\ln x-1}{x^2-(\ln x)^2}dx
I \, = \, \int_{1}^{\sqrt{3}} x^{2x^2+1}+\ln(x^{2x^{2x^2+1}}) dx

The integral \; \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sin {{\left( {2x} \right)}^3}\cos {{\left( {3x} \right)}^2} \, dx }
can be written as \; \left( \frac{a}{b} \right)^b where a and b are integers. Find \sqrt{a^b+b^a+1}

I \, = \, \int \frac{\left( x + 2 \right)^5}{\left( x + 7 \right)^2} \, dx
I \, = \, \int \frac{\sinh(x)+\cosh(x)}{\cosh(x)-\sinh(x)} \, dx
I \, = \, \int\limits_0^{\pi /2} {\sqrt {1 - 2\sin \left( {2x} \right) + 3\cos {{\left( x \right)}^2}} dx}
I \, = \, \int_{0}^{\pi/2} \ln(sec(x))
I \, = \, \int_{0}^{a} \frac{1}{\sqrt{x^2+a^2}} dx
I \, = \, \int \sqrt{ \sqrt{x+2\sqrt{2x+4}} + \sqrt{x-2\sqrt{2x+4}} } dx
I \, = \, \int \frac{ \left( 1 + x^2 \right) } { \left( 1 - x^2 \right) \sqrt{1 + x^4} } \, dx
I \, = \, \int \frac{ \sin(x) + \cos(x) }{e^x + 3 \cos(x) } \, dx
I \, = \, \int \sqrt{ \frac{k + x}{x} } \, dx
I \, = \, \int_{0}^{\infty} x^n \cdot e^{-x} \, dx
I \, = \, \int {\frac{x}{1+\cos(x)}} \, dx
I \, = \, \int {\frac{{{x^2} + 1}}{{{x^4} + 1}}} \, dx
I \, = \, \int\limits_{ - \pi }^\pi {\sqrt {1 + \cos \left( x \right)} } \, dx
I \, = \, \int e^{x/2} \cdot \left( \frac{2 - \sin \left( x \right) }{1 - \cos \left( x\right) } \right) \, dx
I \, = \, \int_{0}^{\infty} \frac{\{1-(x-1)e^x\}\ln(x)}{(1+e^x)^2} dx
I \, = \, \int\limits_0^{\ln \left( 2 \right)} {\sqrt {\frac{{{e^x} + 1}}{{{e^x} - 1}}} } \, dx
I \, = \, \int_{0}^{\infty} \frac{1}{ \left( x + \sqrt{1+x^2} \right)^{\phi}} \, dx \qquad \phi=\frac{1+\sqrt{5}}{2}
I \, = \, \int_0^{\infty} \frac{1}{(x^2+2)^3} \, dx
I \, = \, \int \sqrt{\frac{1}{\,\sin(x)+1}\,}\, dx
I \, = \, \int {\sqrt[3] {\tan \left( x \right)} } \, dx
I \, = \, \int_{0}^{\infty} \frac{x^{29}}{(5x^2+49)^{17}}\, dx \, = \, \frac{14!}{2 \cdot 5^{15} \cdot 49^2 \cdot 16! }\, dx
I \, = \, \int \left( \frac{\arctan(x)}{x-\arctan(x)} \right)^2 \, dx

"Fun"

I \, = \, \int_{1}^{\infty} \ln\left( \sqrt[X]{x} \right)^{2011} dx
I \, = \, \int_{0}^{2\pi} \frac{x \sin(x)}{1+\sin(x)^2} dx
I \, = \, \int_{0}^{2\pi} {\frac{1}{1+e^{\cos(x)}}} dx
I \, = \, \int_0^{\frac {\pi}{2}} \frac{(\sin x)^{\cos x}}{(\cos x)^{\sin x} + (\sin x)^{\cos x}} dx
I \, = \, \int_2^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}} dx
I \, = \, \int_{-1}^{1} \arctan(e^x) dx
I \, = \, \int_{0}^{1} \ln(x)\cdot\ln(1-x) dx
I \, = \, \int_{-\pi/2}^{\pi/2} \frac{1}{1+2009^x} \cdot \frac{\sin(2010x)}{\sin(2010x)+\cos(2010x)} dx
I \, = \, \int \frac{1}{(x^2+1)^k} dx
I \, = \, \int_{0}^{\infty} \frac{x}{e^x-1} dx
I \, = \, \int_{0}^{a} \frac{1}{x+\sqrt{a^2-x^2}} dx \quad a>0
I \, = \, \int_{0}^{\infty} \frac{\ln{2x}}{x^2+9} dx
I \, = \, \int_{0}^{\pi/2} \ln(1-a \cos(x)) \, dx
I \, = \, \int_{-\infty}^{\infty} \sin(x^2)+\cos(x^2) dx
I \, = \, \int_{-\infty}^{\infty} \frac{x^a+x^b}{\ln(x)} dx \qquad (a,b)\forall >-1
I \, = \, \int_0^1 \frac{\ln(1+x^2)}{1+x^2} dx
I \, = \, \int_{0}^{\infty}\frac{1}{x^n+1} dx \quad n>1
I \, = \, \int_{0}^{\pi} \frac{1-\cos{(n\cdot x)}}{1-\cos(x)} dx \quad n\in\mathbb{N^+}
I \, = \, \int_{0}^{1} \ln(x) \cdot e^{-x} \cdot (1-x) dx
I \, = \, \int_{0}^{\infty} \ln\left( \frac{e^x+1}{e^x-1}\right) dx
I \, = \, \int_{0}^{\pi} \ln \left( 1 - 2\alpha \cos(x) + \alpha^2 \right) dx
I \, = \, \int_0^{\infty} \ln (1+e^{-ax} ) dx \quad a>0
I \, = \, \int_0^{\infty} 1 - x\sin\left( \frac{1}{x} \right) dx
I \, = \, \int_0^{\infty} \ln (1+e^{-ax} ) dx \quad a>0
I = \int_{0}^{\infty} \frac{{{e^{ - x}}\left( {1 - {e^{ - 6x}}} \right)}}{{x\left( {1 + {e^{ - 2x}} + {e^{ - 4x}} + {e^{ - 6x}} + {e^{ - 8x}}} \right)}}dx
I = \int\limits_0^1 {\frac{{\sin \left( {p\ln x} \right) \cdot \cos \left( {q\ln x} \right)}}{{\ln x}}}dx
I \, = \, \int_{a}^{\infty} \frac{1}{x^{n+1} \cdot \sqrt{x^2-a^2}} \, dx n \in \mathbb{N}^{+} \; , \; a>0
I \, = \, \int_{a}^{\infty} \frac{x^{-p}}{1+x} \, dx
I \, = \, \int_{ - \infty }^{\infty} \frac{x\sin x}{1 + x^2}dx
I \, = \, \int_0^{\infty} \sin(x)\cdot\arctan\left( \frac{1}{x} \right) dx
I \, = \, \int_{0 }^{\infty} \frac{1}{x} \cdot \sin(\tan(x)) \, dx

Have fun and gl.
 
Last edited:
  • Like
Likes acegikmoqsuwy

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
9
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 57 ·
2
Replies
57
Views
9K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K