MHB Area of multiple circles inside a rectangle

Help seeker
Messages
15
Reaction score
0
Figure shows six identical circles inside a rectangle.
ScreenShot_20210317093706.png

The radius of each circle is 24 cm. The radius of the circles is the greatest possible radius so that the circles fit inside the rectangle. The six circles form the pattern shown in Figure so that
• each circle touches at least two other circles
• the circle in the top row of the pattern and the circles in the bottom row of the pattern touch at least one side of the rectangle
• the centres of the circles all lie on the perimeter of a single triangle.

Find the total area of the $six$ $circles$ $as$ $a$ $percentage$ $of$ $the$ $area$ $of$ $the$ $rectangle$.
 
Mathematics news on Phys.org
Height of triangle = √(96²-48²) ≈ 83.1384387633 cm
Area of rectangle ≈ 144×(83.1384387633+48) ≈ 18883.9351819 cm²
Area of 6 circles ≈ 10857.34422 cm²
Area of 6 circles as a percentage of area of rectangle ≈ 57.49513603 %
 
phymat said:
Height of triangle = √(96²-48²) ≈ 83.1384387633 cm
Area of rectangle ≈ 144×(83.1384387633+48) ≈ 18883.9351819 cm²
Area of 6 circles ≈ 10857.3442$${\color{red}2}$$ cm²
Area of 6 circles as a percentage of area of rectangle ≈ 57.49513$${\color{red}603}$$ %
Minor oversight or calculator algorithm difference.
Those might have been
Area of 6 circles ≈ 10857.3442108
and
Area of 6 circles as a percentage of area of rectangle ≈ 57.4951359778
 
Tnx
Solved
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top