I will give credit to Samy_A for question ##7## since he came up with an answer to the question before I revised it. His answer still answers one direction too.
So, here's the result for ##7##. On one side, continuous functions are Borel measurable. Limits of Borel measurable functions are Borel measurable. This the limit of a continuous limit is definitely Borel measurable.
On the other hand, not all Borel measurable functions are the limit of a sequence of continuous functions. One counterexample here is the indicator function of ##\mathbb{Q}##. The idea is that this function has "many" many discontinuity points, indeed: every point of ##\mathbb{R}## is a discontinuity point. I will prove now however that if ##f = \lim_n f_n## is a limit of continuous functions then ##f## has a discontinuity set that is of first category.
Some terminology:
A closed set is called nowhere dense if its interior is empty. A set is called of first category if it is contained in the countable union of nowhere dense sets. A set is called of second category if it is not of first category.
For any function ##f:U\rightarrow \mathbb{R}## define ##\text{osc}_g(x_0) = \lim_{\delta\rightarrow 0} \text{sup}_{|x-x_0|<\delta} |g(x) - g(x_0)|##. This is called the oscillation of ##g## at ##x_0##. Note that ##g## is continuous at ##x_0## if and only if ##\text{osc}_g(x_0) = 0##.
Lemma: If ##U\subseteq \mathbb{R}## is open and ##\varepsilon>0##, then
$$\overline{\{x\in U~\vert~\text{osc}_g(x)>2\varepsilon\}}\subseteq \{x\in U~\vert~\text{osc}_g(x)\geq \varepsilon/2\}$$
Proof: We need to see that the limit points of the set on the left are in the set on the right. Thus suppose that ##\text{osc}_g(x_n)\geq 2\varepsilon## for all ##n## and that ##x_n\rightarrow x_0##. For each ##n##, choose ##x_{n,m}## such that ##\lim_m x_{n,m} = x_n## and let ##|g(x_{n,m}) - g(x_n)|\geq \varepsilon## for all ##m##. Because convergence of ##x_{n,m}## to ##x_n##, we may choose, for each ##n##, an integer ##m_n## such that ##|x_{n,m_n} - x_n| < |x_0-x_n|## and then ##\lim_n x_{n,m_n} = x_0## by the triangle inequality. From ##|g(x_{n,m_n}) - g(x_n)|\geq \varepsilon##, the triangle inequality forces
$$|g(x_{n,m_n}) - g(x_0)|\geq \varepsilon/2~\text{or}~|g(x_n) - g(x_0)|\geq \varepsilon/2.$$
Defining ##y_n## to be ##x_{n,m_n}## or ##x_n## according to the first or second inequality, we have ##y_n\rightarrow x_0## and ##|g(y_n) - g(x_0)|>\varepsilon/2##. This proves the lemma.
In the following, we will use the Baire category theorem which states that ##\mathbb{R}## is of second category. Furthermore, all nonempty open subsets of ##\mathbb{R}## are of second category.
Theorem: If ##f_n:\mathbb{R}\rightarrow \mathbb{R}## are continuous functions converging pointswise to a function ##f:\mathbb{R}\rightarrow \mathbb{R}##, then the set of discontinuous is of the first category.
Proof: In view of the lemma and the fact that ##\mathbb{R}## is not of the first category, it is enough to prove for each ##\varepsilon>0##, that ##\{x\in \mathbb{R}~\vert~\text{osc}_f(x)\geq \varepsilon\}## does not contain a nonempty open subset of ##\mathbb{R}##. Assuming the contrary, suppose that it contains the nonempty open set ##V##. Define
$$A_{mn} = \{x\in V~\vert~|f_m(x) - f_n(x)|\leq \varepsilon/4\}.$$
This is closed in ##V##. Then ##A_m = \bigcap_{n\geq m} A_{mn}## is closed in ##V##. If ##x\in V##, then the fact that ##\{f_n(x)\}## is Cauchy implies that there is some ##m## such that ##x\in A_{mn}## for ##n\geq m##. Hence ##\bigcup_m A_m = V##. The Baire theorem implies that some ##A_m## has nonempty interior. Fix that ##m## and let ##W## be its nonempty interior. Since
$$A_m\subseteq \{x\in V~\vert~|f_m(x) - f(x)|\leq \varepsilon/4\},$$
every point of ##W## has ##|f_m(x) - f(x)|\leq \varepsilon/4## and ##\text{osc}_f(x)\geq \varepsilon##. Let ##x_0\in W## and choose ##x_n\rightarrow x_0## wth ##|f(x_n) - f(x_0)|\leq 3\varepsilon/4##. From ##|f_m(x_n) - f(x_n)|\leq \varepsilon/4## and ##|f_m(x_0) - f(x_0)|\leq \varepsilon/4##, we obtain ##|f_m(x_n) - f_m(x_0)|\geq \varepsilon/4##. Since ##x_n## converges to ##x_0##, this inequality contradicts the continuity of ##f_m## at ##x_0##. This proves the theorem.
Finally, the characteristic function has entire ##\mathbb{R}## as discontinuity set, but this is not of first category by the Baire category theorem.
For more information, see
https://en.wikipedia.org/wiki/Baire_function and Knapp's "Basic real analysis" from which I adapted this proof.