- #1
Rensslin
- 18
- 3
- TL;DR Summary
- So I’m going to have to show my dullness and ask for help.
I can’t get my mind around how things “burn-up” upon entering the atmosphere.
I envision some kind of bellyflop. Objects have no friction prior to entry. But how is this different from an acceleration within the atmosphere? Is the speed of the object faster than can be attained within the atmosphere? Can this exothermic condition be reproduced within the atmosphere? Bullets travel at 700 FPS but I would think the bullet gets cooler as it goes; which is , in fact, exothermic.
So an object (even a slow moving object) traveling within the atmosphere is causing friction. There must be a formula; Surface area(sa) * barometric pressure(p) * speed (dt) = heat (j); sa*p*dt=jThis same formula must be consistent at the top and bottom of the atmosphere. But if j and p are inverse how does the exothermic problem occur when p is minimal? Also, when old satellites and “space junk” fall out of the sky, they slowly enter the atmosphere and still burn up. If they are stationary with respect to the planet, now dt, p, and, if the item is small, sa is almost nothing. How is j anything?
I need a smart person who can explain.
I envision some kind of bellyflop. Objects have no friction prior to entry. But how is this different from an acceleration within the atmosphere? Is the speed of the object faster than can be attained within the atmosphere? Can this exothermic condition be reproduced within the atmosphere? Bullets travel at 700 FPS but I would think the bullet gets cooler as it goes; which is , in fact, exothermic.
So an object (even a slow moving object) traveling within the atmosphere is causing friction. There must be a formula; Surface area(sa) * barometric pressure(p) * speed (dt) = heat (j); sa*p*dt=jThis same formula must be consistent at the top and bottom of the atmosphere. But if j and p are inverse how does the exothermic problem occur when p is minimal? Also, when old satellites and “space junk” fall out of the sky, they slowly enter the atmosphere and still burn up. If they are stationary with respect to the planet, now dt, p, and, if the item is small, sa is almost nothing. How is j anything?
I need a smart person who can explain.