Undergrad Attractive Kronig-Penney Potential Dispersion Relation Confirmation

Click For Summary
The discussion centers on the confirmation of the dispersion relation for the attractive Kronig-Penney potential as presented on Wikipedia. The user struggles with calculating the determinant and finding literature specifically addressing the attractive variant of the potential, noting that Ashcroft and Mermin primarily cover potential barriers. They reference their attempts to adapt solutions from established texts but express confusion regarding the implications of an attractive potential on calculations. Additionally, they seek clarification on the variable δ in their equations and whether their approach is valid. The conversation highlights the challenges faced by those new to solid state physics in understanding complex potential models.
essil
Messages
2
Reaction score
0
Hi all!

Can anyone confirm (or point me to literature) that the dispersion relation for the attractive Kronig-Penney potential is correctly given on Wikipedia (https://en.wikipedia.org/wiki/Particle_in_a_one-dimensional_lattice):
$$cos(ka) = cos(\beta b)cos(\alpha (a-b))-\frac{\alpha ^2 + \beta ^2}{2\alpha \beta} sin(\beta b) sin(\alpha (a-b)) $$
I have been unsuccessful at calculating the determinant (also given on Wikipedia) despite multiple tries, and was unable to find literature which deals with the attractive variant of the potential.
 
Last edited:
Physics news on Phys.org
Ashcroft and Mermin treat the Kronig-Penney model for a potential barrier, but not an attractive potential. I think the algebra for working to the solution is likely to be similar, so you might want to check out the book "Solid State Physics" by Ashcroft and Mermin. I found the discussion on pp.148-149 of the copy that I have.
 
Thank you for your reply. I have tried to modify the solution from Ashcroft and Mermin, but I am not very experienced in the field yet and I do not quite understand how the fact that my potential is attractive (negative) changes the calculations made in the book. I have used the equation

##\frac{cos(Ka+\delta)}{|t|}=cos(ka)##, where a is the period of the potential. Also I've found the transmission coefficient for the potential well here: http://www.physicspages.com/2012/08/05/finite-square-well-scattering/ (solution from Griffiths), but couldn't reproduce the dispersion relation. This might be a stupid question, but what is ##\delta## in this problem? Can I even use the equation above in this form?
 
essil said:
Thank you for your reply. I have tried to modify the solution from Ashcroft and Mermin, but I am not very experienced in the field yet and I do not quite understand how the fact that my potential is attractive (negative) changes the calculations made in the book. I have used the equation

##\frac{cos(Ka+\delta)}{|t|}=cos(ka)##, where a is the period of the potential. Also I've found the transmission coefficient for the potential well here: http://www.physicspages.com/2012/08/05/finite-square-well-scattering/ (solution from Griffiths), but couldn't reproduce the dispersion relation. This might be a stupid question, but what is ##\delta## in this problem? Can I even use the equation above in this form?
I am also on a learning curve with material such as this. Many years ago, I had a couple of graduate level solid state physics courses, but I don't have very much expertise in that area.
 
A relative asked me about the following article: Experimental observation of a time rondeau crystal https://www.nature.com/articles/s41567-025-03028-y I pointed my relative to following article: Scientists Discovered a Time Crystal That Reveals a New Way to Order Time https://www.yahoo.com/news/articles/scientists-discovered-time-crystal-reveals-180055389.html This area is outside of my regular experience. I'm interested in radiation effects in polycrystalline material, i.e., grain...

Similar threads

  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
8K
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
7K
  • · Replies 4 ·
Replies
4
Views
3K