Atwood at an incline accelerating down

AI Thread Summary
The discussion centers on calculating the acceleration of a system involving masses on an incline and a hanging mass. The correct approach involves creating two free body diagrams (FBD) to derive separate equations for each mass. The common acceleration is determined to be 5.27 m/s², calculated using the equation 9g - 4gsin(30) = 13a. Tension in the rope connecting the masses can be found by analyzing the 6.0-kg mass's FBD. The cropped image of the problem limits the clarity of the question, leading to a vague answer of "a rope."
Enginearingmylimit
Messages
3
Reaction score
1
Homework Statement
A system comprising blocks, a light frictionless pulley, a frictionless, incline, and connecting (“massless”) ropes is shown in the figure. The 9 kg block accelerates downward when the system is released from rest. What is the tension in the rope connecting the 6 kg and 4 kg block?
Relevant Equations
F = ma
Fgy = 9.8 × m
Both myself and my TA gave up, but we found acceleration of the system

9g - 4gsin(30) = 13a
a=5.27m/s^2
 

Attachments

  • image.jpg
    image.jpg
    32 KB · Views: 110
  • image.jpg
    image.jpg
    46.3 KB · Views: 112
Physics news on Phys.org
Yes, you do need to find the common acceleration of the masses first but you have the wrong equation for that. The straightforward way to find the acceleration is to draw two separate free body diagrams (FBD) and get two separate equations, one for the two masses on the incline and one for the hanging mass. Once you have the common acceleration, you can find the tension between the masses by drawing a FBD for the 6.0-kg mass.
 
  • Like
Likes Enginearingmylimit
Unfortunately the image of the question is cropped at the right side. As a result, the answer to the question as posted is "a rope".
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top