Atwood at an incline accelerating down

Click For Summary
SUMMARY

The discussion focuses on calculating the acceleration of a system involving two masses, one on an incline and one hanging. The correct approach involves using free body diagrams (FBD) to derive two separate equations: one for the mass on the incline and another for the hanging mass. The common acceleration is determined to be 5.27 m/s², calculated from the equation 9g - 4gsin(30) = 13a. The tension in the rope connecting the masses can be found by analyzing the 6.0-kg mass's FBD.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Ability to draw and interpret free body diagrams (FBD)
  • Knowledge of trigonometric functions, specifically sine
  • Familiarity with basic physics concepts of mass and acceleration
NEXT STEPS
  • Study the principles of free body diagrams in physics
  • Learn how to apply Newton's second law to systems with multiple masses
  • Explore the effects of friction on inclined planes
  • Investigate tension in ropes and pulleys in physics problems
USEFUL FOR

Students studying physics, educators teaching mechanics, and anyone interested in understanding dynamics involving inclined planes and tension in systems.

Enginearingmylimit
Messages
3
Reaction score
1
Homework Statement
A system comprising blocks, a light frictionless pulley, a frictionless, incline, and connecting (“massless”) ropes is shown in the figure. The 9 kg block accelerates downward when the system is released from rest. What is the tension in the rope connecting the 6 kg and 4 kg block?
Relevant Equations
F = ma
Fgy = 9.8 × m
Both myself and my TA gave up, but we found acceleration of the system

9g - 4gsin(30) = 13a
a=5.27m/s^2
 

Attachments

  • image.jpg
    image.jpg
    32 KB · Views: 121
  • image.jpg
    image.jpg
    46.3 KB · Views: 121
Physics news on Phys.org
Yes, you do need to find the common acceleration of the masses first but you have the wrong equation for that. The straightforward way to find the acceleration is to draw two separate free body diagrams (FBD) and get two separate equations, one for the two masses on the incline and one for the hanging mass. Once you have the common acceleration, you can find the tension between the masses by drawing a FBD for the 6.0-kg mass.
 
  • Like
Likes   Reactions: Enginearingmylimit
Unfortunately the image of the question is cropped at the right side. As a result, the answer to the question as posted is "a rope".
 
  • Haha
Likes   Reactions: erobz

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
Replies
2
Views
2K
Replies
3
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
Replies
1
Views
4K