Autocorrelation of white noise.

AI Thread Summary
The discussion centers on the challenges of rigorously defining white noise in the context of stochastic processes. It highlights the contradiction between the properties of white noise, such as having a flat power spectral density and a non-zero autocorrelation at a single point, which leads to confusion about its existence as a continuous process. The Wiener-Khinchine theorem is referenced to illustrate the relationship between power spectral density and autocorrelation, emphasizing that white noise cannot be defined in traditional terms. The conversation suggests that while white noise can be conceptualized through the derivative of Brownian motion, it lacks pointwise values and is better understood in the framework of generalized functions. Ultimately, the discussion underscores the complexities and limitations of defining white noise within standard stochastic process theory.
vanesch
Staff Emeritus
Science Advisor
Gold Member
Messages
5,109
Reaction score
20
I'm stuck with an elementary thing, it must be something obvious but I can't see what's wrong.

Here it goes. I was writing up some elementary course material for an instrumentation course, and wanted to quickly introduce "white noise".

Now, the usual definition of white noise is something like a stationary random process such that E( X(t) ) = 0 for all t and a flat power spectral density.

On the other hand, the autocorrelation function is defined as R(tau) = E (X(t) X(t+tau) ) (independent of t).

But here's the problem. The Wiener-Khinchine theorem states that the power spectral density equals the Fourier transform of the autocorrelation function, so a flat power spectral density comes down to a Dirac for the autocorrelation. And for example on Wiki, you find that as a defining property of white noise.

But the autocorrelation of white noise E (X(t) X(t) ) is nothing else but sigma-squared.

So it would seem that the autocorrelation function is everywhere 0, except in 0, where it is a finite number.

What am I missing here ?
 
Physics news on Phys.org
White noise cannot be defined rigorously in any of these ways. White noise does not exist as a stochastic process, in the same way that the Dirac delta function does not exist as a function.

There is no (measurable) continuous time stochastic process X that satisfies E[X(t)] = 0, var(X(t)) = σ2, with X(s) and X(t) independent whenever s ≠ t. If we allow var(X(t)) to be infinite, then we can construct such a process, but of course it cannot be continuous. Such a definition, however, is completely useless, because we need the integral of white noise to be Brownian motion. (And it would not be for such a process.)

To rigorously define white noise, we could start with a Brownian motion, B(t). Each sample path, t → B(ω,t), has a derivative in the space of generalized functions on the positive half-line. Call this derivative W(ω). Then W(ω) is our white noise process. Strictly speaking, it does not have pointwise values. We can only integrate it against test functions. Formally, we would have

φ(t)W(t) dt = -∫ φ'(t)B(t) dt
= ∫ φ(t) dB(t),

where this last integral is the Ito integral.

If we want to consider the "process" σW, then this is the distributional derivative of σB, and var(σB(t + h) - σB(t)) = σ2h. If we want to look at difference quotients of σB (which diverge, of course), then we have

var((σB(t + h) - σB(t))/h) = σ2/h.

So even heuristically, the variance of white noise at a single point in time should be infinite. For a more accurate heuristic, we might say that

var((1/h)∫tt+h σW(s) ds) = σ2/h.
 
Thanks !
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...

Similar threads

Back
Top