Average energy of atoms in the Stern–Gerlach experiment

Keky
Messages
2
Reaction score
0
I have been reading about the Stern–Gerlach experiment and found that the atoms leaving the oven in the experiment have an average energy of 2kT, rather than an energy of 3kT/2 for a gas. I can not find a reason for this higher energy myself and would like suggestions on why this seems to be taken for granted on many reports I have read, and why it is so.

Thanks,

Char.
 
Physics news on Phys.org
It is because the atoms effuse out of the oven. Effusion should be covered in an undergrad kinetic theory course. The speed distribution in the beam is
\propto v^3exp(-mv^2/2kT)
rather than the usual
\propto v^2exp(-mv^2/2kT)
for Maxwell-Boltzmann.
 
Thank you for the reply, I shall go read more about effusion.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top