SW VandeCarr said:
I got a calculated break even point from ln(0.75)x=ln(0.5); x=-0.693/-0.288=2.40625 trials=4.8125 rolls. This is the mean of a fitted pdf, but the discrete distribution mean is 6 rolls with the trials consisting of two roll non overlapping sets.
I don't think your method of using non-overlapping sets of two rolls is valid for this problem. You have to allow for the possibility that the first run of two heads occurs on tosses 2 and 3, for instance, and not one of {1,2}, {3,4}, or {5,6}. I think it is an accident your method gives 6 as the median, while the correct answer for the mean is also 6. You might try your method for three heads in a row and see what answer it gives. The correct mean for that is 14 tosses.
Also, consider the simpler problem of how many tosses it takes to get
one head in a row. Obviously one toss of the coin gives a chance of 1/2 of getting a head immediately, so the median is 1. But the mean number of tosses to get one head is 2 (see below).
Why is the mean number of rolls (to get a given face) for a die 6?
When you have a Bernoulli process in which the probability of success on each trial is p, the expected waiting time T until the first success is 1/p. The random variable T has a
geometric distribution. For a coin, p = 1/2 and the mean waiting time is 2. For a die, p = 1/6, so the mean waiting time is 6. To show this, let q = 1-p be the probability of failure on each trial:
E[T] = p(1 + 2q + 3q
2 + ... + nq
n-1 + ...) = p/(1-q)
2 = p/p
2
If we go back to your method of considering non-overlapping pairs of coin tosses, the probability of success there is p = 1/4, as you have pointed out. So the mean number of trials needed to get a success is 4 trials, for a total of 8 tosses. The answer of the OP's problem is smaller because your method leaves out possible ways of getting success.