Average kinetic energy of the molecules in a cold liquid less?

Click For Summary

Discussion Overview

The discussion revolves around the relationship between temperature and the average kinetic energy of molecules in a cold liquid. Participants explore the definitions and implications of temperature, kinetic energy, and their interrelation, addressing both theoretical and conceptual aspects.

Discussion Character

  • Debate/contested
  • Conceptual clarification
  • Technical explanation

Main Points Raised

  • Some participants assert that as the temperature of a liquid decreases, the average kinetic energy of its molecules also decreases, questioning the underlying reasons for this relationship.
  • Others challenge the definition of temperature as the average kinetic energy, suggesting that this definition may not hold in all contexts, such as in solids or during phase transitions.
  • A participant references the kinetic theory, noting its limitations and suggesting that temperature is more accurately defined through thermal equilibrium rather than solely through kinetic energy.
  • Some argue that temperature is what a thermometer measures, implying that this definition is more practical than a strict kinetic energy association.
  • Concerns are raised about the implications of defining temperature as average kinetic energy, particularly in scenarios like the triple point of a substance where different phases coexist at the same temperature.
  • There is a discussion on the equipartition theorem and how energy is distributed among different degrees of freedom, which may affect the understanding of temperature and energy exchange.
  • One participant emphasizes that temperature is not strictly related to kinetic energy outside of ideal gases, suggesting a broader interpretation of energy forms involved in temperature measurement.

Areas of Agreement / Disagreement

Participants express disagreement regarding the definition of temperature and its relationship to average kinetic energy. While some support the kinetic energy definition, others argue against it, leading to an unresolved discussion with multiple competing views.

Contextual Notes

Participants highlight limitations in definitions and assumptions, particularly regarding the applicability of kinetic energy definitions in various states of matter and during phase transitions. The discussion also reflects a lack of consensus on how temperature should be defined in relation to energy.

manogyana25
Messages
6
Reaction score
2
Why is the average kinetic energy of the molecules a cold liquid less?

As the temperature of a liquid decreases, the average kinetic energy of its molecules reduce. What is the reason behind this?
 
Physics news on Phys.org
manogyana25 said:
Why is the average kinetic energy of the molecules a cold liquid less?
Less compared to what?
And temperature is defined as the average kinetic energy of the particles in a substance. A decrease in temperature is therefore synonymous with a decrease in average kinetic energy.
 
PWiz said:
And temperature is defined as the average kinetic energy of the particles in a substance.
Really?
 
manogyana25 said:
Why is the average kinetic energy of the molecules a cold liquid less?

As the temperature of a liquid decreases, the average kinetic energy of its molecules reduce. What is the reason behind this?

It sounds like you are asking why someone bothered to attempt to define temperature:

Paragraph #4 on wiki, regarding Temperature
The kinetic theory offers a valuable but limited account of the behavior of the materials of macroscopic systems. It indicates the absolute temperature as proportional to the average kinetic energy of the random microscopic motions of their constituent microscopic particles such as electrons, atoms, and molecules.

People try to define things all the time. "Why" temperature is defined this way, is probably based on other previous definitions.
Of course, all definitions are limited, in their scope.
 
DrClaude said:
Really?
Yes. Are you joking or are you serious?
 
PWiz said:
Yes. Are you joking or are you serious?
I'm serious. I've never seen temperature defined as the average kinetic energy. And think about it: does it make sense for a solid? What about spin temperature? Yes, the average kinetic energy does increase with temperature, but that's a consequence, not a cause.

Historically, temperature was defined basically as "what a thermometer measures," which is a bit of a circular definition. In modern thermodynamics, temperature is defined through the concept of thermal equilibrium (two objects that can exchange energy are at the same temperature if there is no net flow of energy from one to the other) and quantified by the relation
$$
\frac{1}{T} = \frac{dS}{dU}
$$
 
Wikipedia said:
The kinetic theory offers a valuable but limited account of the behavior of the materials of macroscopic systems. It indicates the absolute temperature as proportional to the average kinetic energy of the random microscopic motions of their constituent microscopic particles such as electrons, atoms, and molecules.
Most introductory physics textbooks have this explanation, right?
Study.com said:
Temperature is a measure of how hot or cold something is; specifically, a measure of the average kinetic energy of the particles in an object, which is a type of energy associated with motion.
(I didn't set that in bold)
I'm not an expert in thermodynamics, but isn't it reasonable to loosely define kinetic temperature for a liquid in this manner? I doubt a very formal treatment of entropy is required here o_O
 
PWiz said:
Most introductory physics textbooks have this explanation, right?
Nope. Just to be sure, I just checked in all those I have on my shelf, and none state that, even the ones in physical chemistry, which tend to be less rigorous :wink:

Study.com said:
Temperature is a measure of how hot or cold something is; specifically, a measure of the average kinetic energy of the particles in an object, which is a type of energy associated with motion.
That is plainly and simply wrong.

PWiz said:
I'm not an expert in thermodynamics, but isn't it reasonable to loosely define kinetic temperature for a liquid in this manner? I doubt a very formal treatment of entropy is required here o_O
The way to do it without invoking entropy is to state that temperature is what a thermometer measures, and discuss thermal equilibrium and the 0th law of thermodynamics. You could do all of classical thermodynamics without even invoking atoms or molecules, so the motion of atoms or molecules is not necessary for the concept of temperature. Of course, in modern times, one should introduce early on the concept that an increase in energy leads to an increase in the internal motion of the constituents of matter, but it is wrong to state that this is how one defines temperature.

Let me take another example to show the problem with this: at the triple point of a substance, you have a solid, a liquid, and a gas phase coexisting at the same temperature. If temperature is defined as the average kinetic energy, is one to conclude that the average kinetic energy is the solid, the liquid, and the gas is the same?
 
In everyday life, hot or high temperature matter, is defined to have high average kinetic energy (as most of them state here), rather than simply high energy. Why is it defined to have high average kinetic energy rather than high energy?

Whatever we touch and feel hot, might have high energy but less kinetic energy, it might even continue to have same kinetic energy when we feel it to be cool (here other form of energy might have decreased rather than kinetic energy). What proof do we have to show that temperature or heat is the function of just kinetic energy rather than energy?

OP seems to mean the same thing.
 
Last edited:
  • #10
DrClaude said:
Let me take another example to show the problem with this: at the triple point of a substance, you have a solid, a liquid, and a gas phase coexisting at the same temperature. If temperature is defined as the average kinetic energy, is one to conclude that the average kinetic energy is the solid, the liquid, and the gas is the same?
Are you telling me to compare the kinetic and potential energies of ice, water and water vapor?
 
  • #11
PWiz said:
Are you telling me to compare the kinetic and potential energies of ice, water and water vapor?
Not even. When you have a phase transition, there is no relation between energy and temperature, because temperature is constant while the energy of the system increases or decreases depending on the direction of the phase transition.
 
  • #12
Vinay080 said:
In everyday life, hot or high temperature matter, is defined to have high average kinetic energy (as most of them state here), rather than simply high energy. Why is it defined to have high average kinetic energy rather than high energy?
Once more, temperature is never defined as the average kinetic energy. In everyday life, temperature is what a thermometer measures.

Vinay080 said:
What proof do we have to show that temperature or heat is the function of just kinetic energy rather than energy?
The simple answer is that it's not. Only for a classical ideal gas is temperature strictly related to kinetic energy.
 
  • #13
With all this, I forgot to answer the OP :oops:

manogyana25 said:
Why is the average kinetic energy of the molecules a cold liquid less?

As the temperature of a liquid decreases, the average kinetic energy of its molecules reduce. What is the reason behind this?

As I mentioned above, temperature is a measure of the tendency of an system to give away or receive energy from another system. When two object of different temperature are in (thermal) contact, the overall exchange in energy will be from the hot object to the cold one, until equilibrium is reached, meaning that there is no overall flow of energy, and the objects are said to be at the same temperature. That energy going to the cold object ends up in all possible ways that object can have energy, including kinetic energy. There is also the equipartition theorem that states how that energy is distributed among the possible ways of storing energy (called degrees of freedom).
 
  • #14
DrClaude said:
Not even. When you have a phase transition, there is no relation between energy and temperature, because temperature is constant while the energy of the system increases or decreases depending on the direction of the phase transition.
If I were to make a guess, all that I would be able to say is that in a phase transition, there is no transfer of heat among the particles (they are all at the same "temperature"). I can't make much progress on the idea except perhaps say that temperature is dependent upon a property that all particles share during phase transitions. It's almost as if both my hands are tied behind my back if I were to define temperature without using translational kinetic energy.
 
  • #15
PWiz said:
If I were to make a guess, all that I would be able to say is that in a phase transition, there is no transfer of heat among the particles (they are all at the same "temperature").
Imagine you have some water at 0 °C, kept in an isolated container. That water is 3/4 ice and 1/4 liquid water. What happens if you leave the system unperturbed? What happens if you furnish a small amount of heat to the system?

PWiz said:
It's almost as if both my hands are tied behind my back if I were to define temperature without using translational kinetic energy.
I don't understand why you are all so intent on defining temperature like that. Yes, there is a relation between temperature and kinetic energy, but there is no way you can build a useful definition of temperature by looking only at kinetic energy.

You are also missing out on some extremely cool (pun intended) physics, such as adiabatic demagnetization (or magnetic refrigeration) and negative temperatures.
 
  • #16
DrClaude said:
Imagine you have some water at 0 °C, kept in an isolated container. That water is 3/4 ice and 1/4 liquid water. What happens if you leave the system unperturbed? What happens if you furnish a small amount of heat to the system?
If no external heat energy is supplied and no work is done on the system, then the proportion of ice and liquid water should remain constant, as an equilibrium between their concentrations is established at 0°C. If heat is added to the system, the potential and kinetic energy of the ##H_2O## particles must increase, so a greater proportion of ice will be converted to liquid (latent heat of fusion). The increase in kinetic energy will obviously not exactly correspond with the amount of thermal energy supplied as the potential energy of the particles increases as well. Nonetheless the molecular energy distribution graph for the particles will shift so that the mean molecular energy increases. (Unless I forgot basic principles of thermodynamics!)
Where do we go from here?
 
  • #17
PWiz said:
If no external heat energy is supplied and no work is done on the system, then the proportion of ice and liquid water should remain constant, as an equilibrium between their concentrations is established at 0°C. If heat is added to the system, the potential and kinetic energy of the ##H_2O## particles must increase, so a greater proportion of ice will be converted to liquid (latent heat of fusion). The increase in kinetic energy will obviously not exactly correspond with the amount of thermal energy supplied as the potential energy of the particles increases as well. Nonetheless the molecular energy distribution graph for the particles will shift so that the mean molecular energy increases. (Unless I forgot basic principles of thermodynamics!)
Where do we go from here?
That's the point I was getting at. You clearly have an increase in kinetic energy, while temperature hasn't changed. Therefore, you definitely can't define temperature as average kinetic energy.
 
  • #18
DrClaude said:
As I mentioned above, temperature is a measure of the tendency of an system to give away or receive energy from another system.
If I'm not misunderstanding this, then there seems to be a problem with this definition. It means that you fundamentally cannot define the temperature of a system without referring to what is outside the system (the temperature of a completely isolated system is not undefined, but under this definition, it will be). However, there is no such restriction when we describe temperature practically. Temperature is an absolute quantity (at least classically).
 
Last edited:
  • #19
PWiz said:
It means that you fundamentally cannot define the temperature of a system without referring to what is outside the system
For a stricter, stand alone definition, you need to go further and use the equation I posted in #6.

PWiz said:
(the temperature of a completely isolated system is not undefined, but under this definition, it will be).
It won't be undefined as you can look at what would happen if the system were to be put into contact with another.
 
  • #20
Isn't it circular to define temperature using entropy, when calculating entropy in the first place requires the temperature to be known?
Sorry but it's taking me some time to wrap my head around this :rolleyes:
 
  • #21
PWiz said:
Isn't it circular to define temperature using entropy, when calculating entropy in the first place requires the temperature to be known?
In statistical mechanics, you have
$$
S = k \ln W
$$
where ##W## is known as the multiplicity of the system. If you can calculate the multiplicity, then you can calculate entropy, completely independently of temperature.
 
  • Like
Likes   Reactions: PWiz
  • #22
DrClaude said:
In statistical mechanics, you have
$$
S = k \ln W
$$
where ##W## is known as the multiplicity of the system. If you can calculate the multiplicity, then you can calculate entropy, completely independently of temperature.
So it all boils down to microstate occupation probabilities, right? I'm starting to see a quantum connection here.
 
  • #23
DrClaude said:
Once more, temperature is never defined as the average kinetic energy. In everyday life, temperature is what a thermometer measures.
That sounds a bit strong, bearing in mind that the very first hit I got from Google ("Temperature kinetic energy") was this link. Hyper physics doesn't usually trade in BS.
 
Last edited by a moderator:
  • #24
sophiecentaur said:
That sounds a bit strong, bearing in mind that the very first hit I got from Google ("Temperature kinetic energy") was this link.
The link is broken.
 
Last edited by a moderator:
  • #26
256bits said:
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html
which shows some complications using only kinetic energy as the only desigated definition of temperature for heat ransfer.
This is correctly written, but one has to pay attention to all the words:
Clearly, temperature has to do with the kinetic energy of the molecules, and if the molecules act like independent point masses, then we could define temperature in terms of the average translational kinetic energy of the molecules, the so-called "kinetic temperature". The average kinetic energy of the molecules of an object is an important part of the concept of temperature and provides some useful intuition about what temperature is. If all matter just consisted of independently moving point masses that just experienced elastic collisions with each other, that would be an adequate picture of temperature.
(emphasis added)
 
  • #27
I guess the difference in the definition is only dependent on whether you choose to describe the system on a microscopic or macroscopic state, and whether the particles in the system exhibit ideal behavior or not.
 
  • #28
PWiz said:
calculating entropy in the first place requires the temperature to be known?

No. See the equation on Ludwig Boltzmann's gravestone:

Boltzmann.jpg


(Nowadays I think most textbooks use the symbol Ω instead of W.)

Added: Ugh, I didn't notice the thread has a second page which already gives the equation. :blushing: Oh well, it's a cool picture anyway.
 
Last edited:
  • Like
Likes   Reactions: OmCheeto
  • #29
DrClaude said:
This is correctly written, but one has to pay attention to all the words:

(emphasis added)
But that's the basis of the Kinetic theory that we all start with. It's only fair tp acknowledge that (albeit with a caveat or two). We discuss Newton's Laws of motion on PF, despite the fact that we know about Relativity.
 
  • #30
sophiecentaur said:
But that's the basis of the Kinetic theory that we all start with. It's only fair tp acknowledge that (albeit with a caveat or two). We discuss Newton's Laws of motion on PF, despite the fact that we know about Relativity.
Agreed. DrClaude, what struck me as odd was your initial incredulity on the issue - as if you'd never heard of the connection.

Anyway, i don't see a problem with using kinetic energy as an admittedly limited starting point. Then, you pull out the caveats as needed. To me, it is a lot better than using an empty/circular definition.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 83 ·
3
Replies
83
Views
8K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 32 ·
2
Replies
32
Views
4K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
4K