Average velocity ##\bar{v}## for a uniformly accelerating particle

AI Thread Summary
The discussion centers on calculating the average velocity for a uniformly accelerating particle, specifically addressing an error in integrating the velocity function. The participant initially misapplies the velocity function, leading to confusion about the signs in the equations. After clarification, it is established that the correct velocity function is v(t) = v_i + a_0(t - t_i). The integration process is confirmed to be correct, and a substitution method is suggested to simplify the calculations. Ultimately, the average velocity is correctly expressed as the average of the initial and final velocities, confirming the solution.
brotherbobby
Messages
749
Reaction score
169
Homework Statement
Show that if a particle is undergoing uniform acceleration, its average velocity over a time ##t## may be written as ##\bar{v} = \dfrac{v_f+v_i}{2}## or as ##\dfrac{x_f-x_i}{t}##, where ##f## and ##i## refer to initial and final values.
Relevant Equations
1. Average velocity is defined to be ##\quad\bar{v} \overset{\text{def.}}{=}\dfrac{\Delta x}{\Delta t}##.
2. For uniformly accelerated motion, final velocity ##\quad v_f=v_1+a_0(t_f-t_i)##
1704046769048.png
Statement of the problem :
Let me copy and paste the problem from the text. Please note it's part (i) that I am seeking to answer. I know the answer to part (ii).

Solution : To show where my error appears, I take the time(s) to be ##t_f## and ##t_i##, whereby the given time interval ##t = t_f-t_i##. The average velocity ##\small{\quad\bar{v}\overset{\text{def.}}{=}\dfrac{\Delta x}{\Delta t}= \dfrac{\int\limits_{t_i}^{t_f}v(t)dt}{t_f-t_i}=\dfrac{\int\limits_{t_i}^{t_f}(v_i+a_0t)dt}{t_f-t_i}=v_i+\dfrac{a_0}{t_f-t_i}\left[ \dfrac{t^2}{2} \right]_{t_i}^{t_f}=v_i+\dfrac{a_0}{2(t_f-t_i)}\left( t_f^2 - t_i^2\right) = v_i+\dfrac{a_0}{2}\left( t_f+t_i \right)=\dfrac{v_i+\{v_i+a_0\left( t_f+t_i\right)\}}{2}}##
The last term is not equal to the final velocity ##v_f## : ##\quad\dfrac{v_i+\overbrace{\{v_i+a_0\left( t_f+t_i\right)\}}^{\ne v_f}}{2}\ne\dfrac{v_i+v_f}{2}##.
We note that the final velocity ##v_f=v_i+a_0(t_f-t_i)##. For me, the minus sign ##-## is replaced with a plus##+## sign.
This is where I am stuck. Request : A hint would be welcome.
 
Physics news on Phys.org
brotherbobby said:
We note that the final velocity ##v_f=v_i+a_0(t_f-t_i)##. For me, the minus sign ##-## is replaced with a plus##+## sign.
You'll have to explain why you made that a plus sign!
 
PeroK said:
You'll have to explain why you made that a plus sign!
1704051745507.png

From my calculations above. The two terms which have "##-##" signs cancel, leaving the term ##t_f+t_i##.
 
brotherbobby said:
View attachment 337949
From my calculations above. The two terms which have "##-##" signs cancel, leaving the term ##t_f+t_i##.
You have integrated wrongly. You should find that the integral of velocity for constant acceleration is
$$x_f -x_i = v_i(t_f-t_i) +\frac 1 2 a(t_f^2 -t_i^2)$$
Ps sorry, I meant:
$$x_f -x_i = v_i(t_f-t_i) +\frac 1 2 a(t_f-t_i)^2$$
 
Last edited:
I don't follow you. What you wrote is exactly what I did.

##x_f -x_i = v_i(t_f-t_i) +\frac 1 2 a(t_f^2 -t_i^2)##

If you divide both sides of the equation by ##t_f-t_i##, you get ##\bar v= v_i+\dfrac{1}{2}a_0(t_f+t_i)##, which is what I got.
PeroK said:
You have integrated wrongly
Can you show me where in my workings in post #1 above?
 
Your integration is fine. What you have inadvertently done is used the wrong function for ##v(t)##. I ask you to evaluate ##v(t)## at ##t=t_o## and tell us what you get.
 
  • Like
Likes PeroK and Orodruin
erobz said:
Your integration is fine. What you have inadvertently done is used the wrong function for ##v(t)##. I ask you to evaluate ##v(t)## at ##t=t_o## and tell us what you get.
I got you. We should have ##v(t) = v_i+a_0(t-t_i)##. Hence when ##t=t_i##, ##v(t_i)=v_i##.
 
I show you the calculations below in rough. Thanks. I have solved the problem.
1704055489561.png
 
It will save you significant algebra if you do a ##u## substitution with ##u = t - t_o ## to evaluate the integral.

##du = dt##

## u_f = t_f - t_o##

## u_o = t_o -t_o = 0 ##

$$ \bar{v} = \frac{ \int_{0}^{u_f} \left( v_o + a_o u \right) du}{u_f} $$

$$ \implies \bar{v} = \frac{v_o u_f + \frac{1}{2} a_o u_f^2 }{u_f} $$

$$ \implies \bar{v} = v_o + \frac{1}{2} a_o u_f = v_o + \frac{1}{2} a_o ( t_f - t_o ) = \frac{v_o+v_f}{2} $$
 
Back
Top