JulienB
- 408
- 12
@TSny Thanks again for your answer. I tried integrating without making any decision for the values to see where it goes:
##\dot{\theta} = k^2 \int \frac{k^2}{\sin^2 \theta \tan \theta} dt##
##\dot{\theta} = k^2 \big(\frac{-1}{2 \sin^2 \theta} + \dot{\theta}_0\big)##
##\implies \theta = k^2 \int \big(\frac{-1}{2 \sin^2 \theta} + \dot{\theta}_0\big) dt##
##\theta = \frac{k^2}{2 \tan \theta} + \dot{\theta}_0 t + \theta_0##
which by substituting back ##k = \sin^2 \theta \dot{\varphi}## gives
##\theta = \frac{1}{2} \frac{\sin^4 \theta}{\tan \theta} \dot{\varphi}^2 + \sin^4 \theta \dot{\varphi}^2 \dot{\theta}_0 + \sin^4 \theta \dot{\theta}^2 \theta_0##
Is that correct? Seems a bit crazy. If I define the initial conditions as ##\theta_0 = 0## and ##\dot{\theta} = 0##, then I would get the special solution
##\theta = \frac{1}{2} \frac{\sin^4 \theta}{\tan \theta} \dot{\varphi}^2##.
Is that going the right direction? I'm a little skeptical :)Julien.
##\dot{\theta} = k^2 \int \frac{k^2}{\sin^2 \theta \tan \theta} dt##
##\dot{\theta} = k^2 \big(\frac{-1}{2 \sin^2 \theta} + \dot{\theta}_0\big)##
##\implies \theta = k^2 \int \big(\frac{-1}{2 \sin^2 \theta} + \dot{\theta}_0\big) dt##
##\theta = \frac{k^2}{2 \tan \theta} + \dot{\theta}_0 t + \theta_0##
which by substituting back ##k = \sin^2 \theta \dot{\varphi}## gives
##\theta = \frac{1}{2} \frac{\sin^4 \theta}{\tan \theta} \dot{\varphi}^2 + \sin^4 \theta \dot{\varphi}^2 \dot{\theta}_0 + \sin^4 \theta \dot{\theta}^2 \theta_0##
Is that correct? Seems a bit crazy. If I define the initial conditions as ##\theta_0 = 0## and ##\dot{\theta} = 0##, then I would get the special solution
##\theta = \frac{1}{2} \frac{\sin^4 \theta}{\tan \theta} \dot{\varphi}^2##.
Is that going the right direction? I'm a little skeptical :)Julien.