- #1
Dr. Seafood
- 121
- 0
Homework Statement
We are required to sketch a (reasonably accurate) picture of a rational function f(x) = P(x)/Q(x) with P, Q polynomials in x and Q nonzero. We know that the roots of Q(x) are, say, x1, x2, etc. and so f(x) is (typically) asymptotic to the vertical lines x = xk for each k.
We want [tex]\lim_{x \rightarrow {x_{k}}^{\pm}} f(x)[/tex] for each xk. Note that we need the limiting behavior of f(x) for x < xk and x > xk, separately, in order to accurately sketch the behavior of f(x) near these vertical asymptotes. That's a total of 2k limits we need to solve, though they are each very similar.
I'm a tutor and so I need to present the solution of this to my student. But it kinda sucks that I don't know how to evaluate this kind of simple one-sided limit problem off hand. I'm pretty sure that there's some algebra trick we can use to express the rational function in a different form that makes the limit easy to evaluate using the typical "limit laws".
I don't want to have to go all ϵ-δ on my student though :p He knows the formal definition of "limit", but I feel that we don't need to refer to it to evaluate limits of rational functions because we've already proven the limit laws.
For example, say [tex]f(x) = {x^3 - 3x^2 - 4x + 12 \over x^2 - 1}[/tex] Since the roots of x2 - 1 are x = ±1, we want the following limits:
[tex]\lim_{x \rightarrow {1}^{+}} {x^3 - 3x^2 - 4x + 12 \over x^2 - 1} \qquad \lim_{x \rightarrow {1}^{-}} {x^3 - 3x^2 - 4x + 12 \over x^2 - 1}[/tex]
[tex]\lim_{x \rightarrow {(-1)}^{+}} {x^3 - 3x^2 - 4x + 12 \over x^2 - 1} \qquad \lim_{x \rightarrow {(-1)}^{-}} {x^3 - 3x^2 - 4x + 12 \over x^2 - 1}[/tex]
The Attempt at a Solution
[tex]\lim_{x \rightarrow {1}^{+}} {x^3 - 3x^2 - 4x + 12 \over x^2 - 1} = \infty[/tex] To show this, I suppose I can argue by evaluating the expression for numbers close to (but greater than) x = 1 and observing the quantity is large and positive. So we can "plug in" x = 1.1, 1.01, 1.001, etc. into the limiting expression and see that it grows without bound. But this is not very rigorous/formal at all.
Also, this is just a "sub-problem" in the larger problem of trying to sketch the graph of this curve. I don't want to have to make these kinds of tedious numerical arguments when presenting the reasoning here; it will just get in the way of the larger problem.
Isn't there a better way to quickly have the solution here? I feel like this a pretty typical elementary limit problem.
Last edited: