Here is my approach:
let
##\lambda_1 = cos\big(\frac{2}{7}\pi\big)##
##\lambda_2 = cos\big(\frac{4}{7}\pi\big)##
##\lambda_3 = cos\big(\frac{8}{7}\pi\big)##
- - - -
key idea: symmetry
note ##cos(a)## obeys the identity: ##cos^2(a) = \frac{1}{2}\big(1+ cos(2a)\big)##
so if we apply this to each ##\lambda##, we get:
##\lambda_1^2 = \frac{1}{2}\big(1+ \lambda_2\big)##
##\lambda_2^2 = \frac{1}{2}\big(1+ \lambda_3\big)##
##\lambda_3^2 = \frac{1}{2}\big(1+ \lambda_1\big)##
Also noting that each ##\lambda_k## is the cosine of some multiple of pi, where each multiple is *not* a natural number, we know that ##\big \vert \lambda_k \big \vert \lt 1## for ##k \in \{1,2,3\}## -- i.e. each lambda has magnitude of less than one.
as mentioned by
@fresh_42 we know that
##\lambda_1 + \lambda_2 + \lambda_3 = \lambda_1^3 + \lambda_2^3 + \lambda_3^3##
(which translates to the relation below)
##trace\big(\mathbf C\big) = trace\big(\mathbf C^3\big)##
- - - -
Solution:
From here I just beat this problem with a hammer using some facts from polynomial and matrix theory -- specifically things related to symmetric sums.
These ##\lambda##'s are all real numbers -- let them be interpreted as roots to some polynomial in monic form, i.e.
##p(x) = x^3 + a_2 x^2 + a_1 x + a_0 = (x- \lambda_1)(x- \lambda_2)(x-\lambda_3)##
We can encode this polynomial in the companion matrix ##\mathbf C##.
we know that
##a_2 = -trace\big(\mathbf C\big)##Newton's Identities (or just mechanical manipulation of the companion matrix) tell us that
##a_1 = -\frac{1}{2}\Big(a_2 trace\big(\mathbf C\big) + trace\big(\mathbf C^2\big)\Big) = -\frac{1}{2}\Big( -trace\big(\mathbf C\big)^2 + trace\big(\mathbf C^2\big)\Big) = \frac{1}{2} trace\big(\mathbf C\big)^2 - \frac{1}{2} trace\big(\mathbf C^2\big) ##
but we also know that ##a_1## is a symmetric function given by
##a_1 = \lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_1\lambda_3##
Now the symmetry exploit creeps in:
##trace\big(\mathbf C^3\big) = \lambda_1^3 + \lambda_2^3 + \lambda_3^3 = \lambda_1(\lambda_1^2) + \lambda_2(\lambda_2^2) + \lambda_3(\lambda_3^2) = \lambda_1\big(\frac{1}{2}( 1 + \lambda_2)\big) + \lambda_2\big(\frac{1}{2}( 1 + \lambda_3)\big) + \lambda_3\big(\frac{1}{2}( 1 + \lambda_1)\big) ####trace\big(\mathbf C\big) = trace\big(\mathbf C^3\big) = \frac{1}{2}\big(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3 \lambda_1\big) +\frac{1}{2}\big(\lambda_1 + \lambda_2+ \lambda_3 \big) = \frac{1}{2}\big(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3 \lambda_1\big) +\frac{1}{2}trace\big(\mathbf C \big)##
##\frac{1}{2} trace\big(\mathbf C\big) = \frac{1}{2} \big(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3 \lambda_1\big)##
## trace\big(\mathbf C\big) = a_1 = trace\big(\mathbf C^3\big)##
using the Newton identity, this gives us:
##a_1 = trace\big(\mathbf C\big) = \frac{1}{2} trace\big(\mathbf C\big)^2 - \frac{1}{2} trace\big(\mathbf C^2\big) ##
- - - -
and we just need to make ##trace\big(\mathbf C^2\big)## 'go away'.
To finish this off, we examine the eigenvalue representation of ##trace\big(\mathbf C^2\big)## and again apply the symmetry exploit:
##trace\big(\mathbf C^2\big) = \lambda_1^2 + \lambda_2^2 + \lambda_3^2 = \frac{1}{2}\big(1 + \lambda_2\big) + \frac{1}{2}\big(1 + \lambda_3\big) + \frac{1}{2}\big(1 + \lambda_1\big) = \frac{3}{2} +\frac{1}{2}\big(trace\big(\mathbf C\big)\big)##
Now make the substitution into our equation from the Newton Identity.
##a_1 = trace\big(\mathbf C\big) = \frac{1}{2} trace\big(\mathbf C\big)^2 - \frac{1}{2} \Big(trace\big(\mathbf C^2\big)\Big) = \frac{1}{2} trace\big(\mathbf C\big)^2- \frac{1}{2}\Big( \frac{3}{2} +\frac{1}{2}trace\big(\mathbf C\big)\Big) ##
multiply everything by 2
##2 a_1 = a_1^2- \Big( \frac{3}{2} +\frac{1}{2}a_1 \Big) ##
##0 = a_1^2 - \frac{5}{2}a_1 - \frac{3}{2}##
And we can eyeball the trace and determinant of such an equation as having roots of ##-\frac{1}{2}## and ##3##. Because each ##\lambda## has magnitude less than one, by triangle inequality, we know
##\big \vert \lambda_1 + \lambda_2 + \lambda_3 \big \vert\leq \big \vert \lambda_1\big \vert + \big \vert\lambda_2\big \vert + \big \vert\lambda_3\big \vert \lt 3##
and hence we throw out the root of 3.
We keep the root of
##-\frac{1}{2} = a_1 = trace\big(\mathbf C\big) =trace\big(\mathbf C^3\big) = \lambda_1^3 + \lambda_2^3 + \lambda_3^3##
as our answer, which completes the proof.