MHB Basis & Dimension of 2x2 Matrix Subspaces: W1 & W2

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Basis Dimension
Yankel
Messages
390
Reaction score
0
Hello

I have this problem, I find it difficult, any hints will be appreciated...

Two subspaces are given (W1 and W2) from the vector space of matrices from order 2x2.

W1 is the subspace of upper triangular matrices

W2 is the subspace spanned by:

\[\left(\begin{matrix}1&0\\1&2\\\end{matrix}\right)\]

\[\left(\begin{matrix}1&1\\2&1\\\end{matrix}\right)\]

\[\left(\begin{matrix}2&1\\0&0\\\end{matrix}\right)\]

a. what is the dimension of the intersection of W1 and W2 ?

b. does:

\[\left(\begin{matrix}6&1\\0&4\\\end{matrix}\right)\]

belong to the intersection ?

thanks !
 
Physics news on Phys.org
Yankel said:
Hello

I have this problem, I find it difficult, any hints will be appreciated...

Two subspaces are given (W1 and W2) from the vector space of matrices from order 2x2.

W1 is the subspace of upper triangular matrices

W2 is the subspace spanned by:

\[\left(\begin{matrix}1&0\\1&2\\\end{matrix}\right)\]

\[\left(\begin{matrix}1&1\\2&1\\\end{matrix}\right)\]

\[\left(\begin{matrix}2&1\\0&0\\\end{matrix}\right)\]

a. what is the dimension of the intersection of W1 and W2 ?

b. does:

\[\left(\begin{matrix}6&1\\0&4\\\end{matrix}\right)\]

belong to the intersection ?

thanks !
Let:
\(b_1=\left(\begin{matrix}1&0\\1&2\\\end{matrix} \right) \)

\(b_2=\left(\begin{matrix}1&1\\2&1\\\end{matrix} \right) \)

\(b_3=\left(\begin{matrix}2&1\\0&0\\\end{matrix} \right) \)

The it is obvious (and by that I mean an exercises left to the reader) to show that a linear combination of \(b_1, b_2\) and \(b_3\) which is upper triangular is or the form:

\(u(\alpha,\beta)=2\alpha b_1+\alpha b_2 + \beta b_3\)

Thus the upper triangular matrices in \(W1\) form a 2D subspace of 2x2 matrices, which tells us that the intersection of \(W1\) and \(W2\) is 2 dimensional.

The second part just requires that you determine if

\(u(\alpha,\beta) = \left(\begin{matrix}6&1 \\ 0&4 \\ \end{matrix} \right) \)

has a solution.

CB
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Replies
10
Views
3K
Replies
11
Views
5K
Replies
34
Views
2K
Replies
15
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
Back
Top