Best dimensions for maximum surface area

bjgawp
Messages
84
Reaction score
0
I was doing some math problems involving surface area and maximum dimensions and then I wondered:
Suppose you are given the surface area of a rectangular box but none of its dimensions. Is it possible to find the best dimensions (x,y,z) that would give the maximum volume of the box? I was thinking of something along the lines of making a graph and finding its maximum value ... Ex. 400cm² = 2xy + 2xz + 2yz. Possible? Unless there are other ways of doing it...
 
Mathematics news on Phys.org
Make a graph of what? Not the surface area function that you give: you want to maximize the volume: V= xyz.

The standard way of "maximizing" (or "minimizing") a function is to find its derivative and set that equal to 0. Since here you have a function of three variables (x,y,z) and an additional constraint, there are two ways to do it.

1) Use the constraint to reduce the number of variables: 2xy+ 2xz+ 2yz= 400 so 2(x+y)z= 400- 2xy so z= (200-xy)/(x+y) and then V= xy(200-xy)/(x+y). Differentiate that with respect to x and y (partial derivatives) and set them equal to 0. You can probably see those are going to be messy derivatives!

2) The Lagrange Multiplier method: At a maximum (or minimum) value, the gradient of the function must be a multiple of the gradient of the constraint. Here the function to be maximized is V= xyz. grad V= yzi+ xzj+ xyk. The constraint function is U= 2xy+ 2xz+ 2yz= 400 and grad U= (2y+ 2z)i+ (2x+2z)j+ (2x+2y)k. One is a multiple of the other if yz= \lambda(2y+ 2z), xz= \lamba(2x+2z), and xy= \lambda(2x+ 2y). That \lambda is the "Lagrange Multiplier".
If you eliminate \lambda from those, you can get immediately that x= y= z: a cube will maximize volume for given surface area.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top