- #1

- 126

- 0

## Homework Statement

[tex]\int_{0}^{3}\sqrt[3]{\frac{3-x}{x^2}}\: \mathrm{d}x[/tex]

**2. The attempt at a solution**

I'm pretty sure I have to use Euler's Beta function, so I tried to change the limits to 0 and 1 by setting x = 3·u (so dx = 3·du). However there must be some mistake when I did it because I checked and I did it wrong:

[tex]\int_{0}^{3}\sqrt[3]{\frac{3-x}{x^2}}\: \mathrm{d}x=\int_{0}^{1}\sqrt[3]{\frac{3-3u}{(3u)^2}}\: 3\cdot\mathrm{d}u=3^{\frac{2}{3}}\cdot\beta\left(\frac{1}{3},\frac{4}{3}\right)[/tex]

Thanks a lot for your help.

Last edited: