stefanbanev
- 50
- 1
I'm curious what the biggest size of Bosenova technically feasible. Is it possible to get into milligrams range?
Thx...
Thx...
A bosenova or bose supernova is a very small, supernova-like explosion, which can be induced in a Bose–Einstein condensate(BEC) by changing the magnetic field in which the BEC (Bose-Einstein Condensate) is located so that the BEC quantum wavefunction's "self-scattering" interaction due to the Feshbach resonance transitions from repulsive to attractive, causing the BEC to "collapse and bounce" or "rebound."[1]
Although the total energy of the explosion is very small, the "collapse and bounce" scenario superficially and quite vaguely resembles (albeit is physically quite unrelated to) a tiny core-collapse supernova, hence the term 'bosenova'. (The nomenclature is also partly a play on the Brazilian music style, bossa nova.)
DrClaude said:I don't see any reason there would be some upper limit, apart from technical difficulties. It simply corresponds to changing the collisional properties of the atoms in a BEC through a Feshbach resonance, so it could in principle be as big as any BEC can be.
No. I think that current BECs can reach 108 to 109 atoms, and I don't think that this number can be increased that much in the near future. You have to remember that BEC represents a metastable state: at the low temperatures reached, these atoms should form a solid block, so the gases are quite dilute.stefanbanev said:Thanks for the answer ... does it mean that in your opinion to get into milligrams range is technically feasible?
I don't know what hoe big is the biggest, but probably in the 106-107 range. Scientifically, bosenovas are not that interesting, and I don't think anyone is trying to make large ones.stefanbanev said:What the biggest size Bosenova has been observed in the laboratory so far? Pls provide the link to the source... Thx...
DrClaude said:No. I think that current BECs can reach 108 to 109 atoms, and I don't think that this number can be increased that much in the near future. You have to remember that BEC represents a metastable state: at the low temperatures reached, these atoms should form a solid block, so the gases are quite dilute.I don't know what hoe big is the biggest, but probably in the 106-107 range. Scientifically, bosenovas are not that interesting, and I don't think anyone is trying to make large ones.