Binomial expansion of term with x^2

AI Thread Summary
To find the coefficient of x^18 in the expansion of (1/14 x^2 - 7)^16, the correct approach involves identifying the general term in the binomial expansion, which is nCk a^k b^(n−k). The user initially miscalculated by using 8C9, which is invalid since k cannot exceed n, leading to confusion in evaluating the coefficients. The correct method involves substituting y = x^2, allowing for the calculation of the coefficient of y^9 in ((1/14)y - 7)^16, which is determined using 16C9 (1/14)^9 (-7)^7. The discussion highlights the importance of correctly applying binomial coefficients and understanding their limitations in the context of the expansion.
Roodles01
Messages
125
Reaction score
0
I have to determine the coefficient of an x term in an expansion such as this;
Determine the coefficient of x^18 in the expansion of (1/14 x^2 -7)^16

The general term in the binomial expansion is
nCk a^k b^(n−k)
I could let
a = (1/14 x^2)
b = -7
n = 16
k = 9?

I have no real idea of how to go about finding this coefficient using the binomial theorem.

Having expanded the expression to the 10th term I get

8C9 (-7) (1/14 x^2)^9

I'm using nCk = n! / (n-k)!k! but can't evaluate this as it is a negative.

I'm assuming that the 8C9 bit is just the opposite of 6th term i.e. 12C5 = 792 (looking at Pascal's triangle this is on the opposite side), but I can get the x^18 bit (I'm assuming the (x^2)^9 can be x^18 here)

Can someone check, please?
 
Last edited:
Physics news on Phys.org
Roodles01 said:
I have to determine the coefficient of an x term in an expansion such as this;
Determine the coefficient of x^18 in the expansion of (1/14 x^2 -7)^16

The general term in the binomial expansion is
nCk a^k b^(n−k)
I could let
a = (1/14 x^2)
b = -7
n = 16
k = 9?

I have no real idea of how to go about finding this coefficient using the binomial theorem.

Having expanded the expression to the 10th term I get

8C9 (-7) (1/14 x^2)^9

I'm using nCk = n! / (n-k)!k! but can't evaluate this as it is a negative.

I'm assuming that the 8C9 bit is just the opposite of 6th term i.e. 12C5 = 792 (looking at Pascal's triangle this is on the opposite side), but I can get the x^18 bit (I'm assuming the (x^2)^9 can be x^18 here)

Can someone check, please?

Conventionally, nCk for integers 0 < n < k is regarded as zero. Why did you write 8C9?

RGV
 
If you let y= x^2, then you are looking for the coefficient of y^9 in ((1/14)y- 7)^16.
That will be, of course, 16C9 (1/14)^9(-7)^7
 
Of course you are right HallsofIvy.

I was doing this

(OK I put the 6th term when I meant 7th)
I put 8C9 as I understand that when I expand the expression (1/14 x^2 - 7) longhand I get;

-7^16 + (16C1*-7^15*(1/14 x^2)) + (15C2*-7^14*(1/14 x^2)) + . . . . + (11C6*-7^10*(1/14 x^2)) + . . . . . . . . + (8C9*-7^7*(1/14 x^2)) . . . .

Where (11C6*-7^10*(1/14 x^2)) is the 7th term of the expansion
& (8C9*-7^7*(1/14 x^2)) is the 10th term

Pascals triangle, being symmetrical, should reflect the coefficients around the8th & 9th terms. So I'm assuming that the coefficient of the 7th term should be the same as the 10th term.

When I try to calculate 8C9 (which I did longhand, shown above)
I use form nCk = n! / (n-k)!*k!
If I let n=8
& k=9
I get 8!/(-1)!*9!

I work this out to be;
40320 / -1 * 362880 = -0.1

I know this isn't right so why did I do this wrong!
 
_8C_9 would be the coefficient of a^9 in (a+ b)^8 and there is no such term! Do you mean _9C_8?
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top