MHB Binomial Sum \displaystyle \sum^{n}_{k=0}\binom{n+k}{k}\cdot \frac{1}{2^k}

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Binomial Sum
juantheron
Messages
243
Reaction score
1
Evaluation of $\displaystyle \sum^{n}_{k=0}\binom{n+k}{k}\cdot \frac{1}{2^k}$
 
Mathematics news on Phys.org
$$S = \sum_{k=0}^n {n+k\choose n} \frac{1}{2^k}
= \sum_{k=0}^n \frac{1}{2^k} [z^n] (1+z)^{n+k}
= [z^n] (1+z)^n \sum_{k=0}^n \frac{1}{2^k} (1+z)^k
\\ = [z^n] (1+z)^n
\frac{1-(1+z)^{n+1}/2^{n+1}}{1-(1+z)/2}
= [z^n] (1+z)^n
\frac{2-(1+z)^{n+1}/2^{n}}{1-z}
\\ = 2\times 2^n
- [z^n] (1+z)^{2n+1} \frac{1}{2^n} \frac{1}{1-z}
\\ = 2\times 2^n
- \frac{1}{2^n} \sum_{k=0}^n {2n+1\choose k}
= 2\times 2^n - \frac{1}{2^n} \frac{1}{2} 2^{2n+1}
= 2^n.$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K