Biot-Savart equation for AC current

AI Thread Summary
The discussion centers on the application of the Biot-Savart law for calculating the magnetic field generated by a circular loop carrying a time-dependent sinusoidal current. Participants clarify that while the Biot-Savart law can be applied at all times, the current must be expressed as a function of time, i(t), when it varies. There is a distinction made between quasi-static approximations and full dynamic treatments, with emphasis on the implications of neglecting the displacement current term in Maxwell's equations. The original poster is encouraged to provide more details about the geometry and specific conditions of the problem to facilitate better assistance. The frequency of the current is noted to be below 1 kHz, focusing the magnetic field calculation on the center of the coil.
Artemisia_
Messages
2
Reaction score
1
Homework Statement
Considering to have a uniform sinusoidal current (in time) flowing in a circular loop, how does the sinusoidal nature of the current affects the magnetic field generated by the coil?
Relevant Equations
B(r) = (m0/4pi)integ(i*(dl*(x-l)/(x-l)^3))
The fact that the current changes in time should allow me to take it outside from the integral along the coil, since it is not a function of space. But I'm not sure about this assumption, is there something I'm missing or am i correct?
Thanks
 
Physics news on Phys.org
Welcome to PF.

Can you post a link or upload a diagram that shows the geometry that you are asking about? That way we can be sure to help you with your question.

Also, it helps if you can start to learn how to post math equations using LaTeX. There is a "LaTeX Guide" link at the bottom of the Edit window.
 
Biot-Savart is applicable at all times. If the current is time-dependent, you replace ##i## in the expression with ##i(t)##.
 
  • Like
Likes bob012345
Artemisia_ said:
Homework Statement:: Considering to have a uniform sinusoidal current (in time) flowing in a circular loop, how does the sinusoidal nature of the current affects the magnetic field generated by the coil?
Relevant Equations:: B(r) = (m0/4pi)integ(i*(dl*(x-l)/(x-l)^3))

The fact that the current changes in time should allow me to take it outside from the integral along the coil, since it is not a function of space. But I'm not sure about this assumption, is there something I'm missing or am i correct?
Thanks
kuruman said:
Biot-Savart is applicable at all times. If the current is time-dependent, you replace ##i## in the expression with ##i(t)##.
And there is the additional consideration of whether this is a circular loop antenna, radiating EM away from the near field equations to the far field EM propagation equations.

@Artemisia_ -- Please post much more information about this problem to keep us from going in circles trying to post helpful replies. Thanks.
 
  • Like
Likes vanhees71 and Delta2
kuruman said:
Biot-Savart is applicable at all times. If the current is time-dependent, you replace ##i## in the expression with ##i(t)##.
I guess you mean this in the quasi static approximation (when we neglect the displacement current term in Maxwell's equations). Because in the full dynamic treatment a time varying current will create time varying magnetic field, which will create time varying electric field, which according to the displacement current term in the Maxwell's- Ampere's law will create additional magnetic field.
Biot-Savart law is equivalent to Ampere's law without the displacement current term.
 
Delta2 said:
I guess you mean this in the quasi static approximation (when we neglect the displacement current term in Maxwell's equations). Because in the full dynamic treatment a time varying current will create time varying magnetic field, which will create time varying electric field, which according to the displacement current term in the Maxwell's- Ampere's law will create additional magnetic field.
Biot-Savart law is equivalent to Ampere's law without the displacement current term.
Sure. This is an introductory level question and that is why I did not consider the displacement current. Nevertheless, we have to hear again from OP as @berkeman suggested.
 
  • Like
Likes Delta2 and berkeman
I think there is another reason why we should consider the quasi static approximation, the current in the loop is given as uniform, therefore according to an approximation we can make (can't reveal more since we wait to hear from OP) the far field (##\frac{1}{r}## term) is zero.
 
  • Like
Likes kuruman
berkeman said:
And there is the additional consideration of whether this is a circular loop antenna, radiating EM away from the near field equations to the far field EM propagation equations.

@Artemisia_ -- Please post much more information about this problem to keep us from going in circles trying to post helpful replies. Thanks.
Thank you all for the replies, i try to give here a bit more information, the frequency range is lower than 1KHz, so not extrememly high, and the magnetic field calculation i want to have it in the centre of the coil/along the central axis of the coil, so not in all the space.
 
  • Like
Likes Delta2
Back
Top