"Biot-Savart equivalent" of Faraday's Law?

The Jefimenko equations may be consistent with the equation above, but that's not really the point of the question. The point of the question is whether the Biot-Savart Law (equation without taking into account Coulomb's Law) is consistent with the Jefimenko equations.I don't know.f
  • #1
764
20
This is a repeat of this thread https://www.physicsforums.com/threads/biot-savart-version-of-maxwell-faraday-equation.855423/

That thread was dominated by one verbose poster. I am repeating this thread so as to hear the opinions of others.


Ampere's Law can be derived from the Biot-Savart Law.
0246.png


Faraday's Law is similar to Ampere's Law.

Is there a "Biot-Savart equivalent" of Faraday's Law?

I imagine it might look something like this: (not taking into account Coulomb's Law)

[tex]\frac{d\vec{E}}{dV}=\frac{-\left(\frac{∂\vec{B}}{∂t}\right)×\vec{1_r}}{4\pi r^2}[/tex]
 
Last edited:
  • #2
Without an equation like the one above, how can we construct the entire E-vector field due to a changing magnetic field?
 
  • #3
Maxwell's equations include ##∇×B=\mu_0 J## and ##∇×E=-\frac{∂B}{∂t}##

##∇×B=\mu_0 J## cannot adequately describe the Biot-Savart Law, the same with ##∇×E=-\frac{∂B}{∂t}##, which is why I've conceived the above.
 
  • #5
It seems there's not much response here.
Also have you checked with your profs?
Yeah, but I don't think that this is a boring question.

Prof is asleep. No response.
The wiki doesn't have anything on this.

I thought of this question because of the parallel between E and M and I also want to construct the entire E-vector field due to a changing magnetic field
 
  • #6
Try finding a prof who isn't asleep maybe an applied mathematics profs or one in EE.
 
  • #7
Well, if the magnetic field is time dependent then also very likely the electric field is, and then you need (generally) the full Maxwell equations. So the Ampere law should be used as the full Ampere-Maxwell Law,
$$\vec{\nabla} \times \vec{B}-\frac{1}{c} \partial_t \vec{E}=\frac{1}{c} \vec{j}.$$
The Maxwell equations for given charge-current distributions are solved by the retarded propagator (aka Jefimenko equations):

https://en.wikipedia.org/wiki/Jefimenko's_equations
 
  • #8
The Maxwell equations for given charge-current distributions are solved by the retarded propagator (aka Jefimenko equations):

https://en.wikipedia.org/wiki/Jefimenko's_equations

Ooh, thanks for bringing that to my attention. I had conceived Jefimenko's idea independently, now I know of the equations.

is the formula below (after taking into account Coulomb's Law) consistent with the Jefimenko equations?

[tex]\frac{d\vec{E}}{dV}=\frac{-\left(\frac{∂\vec{B}}{∂t}\right)×\vec{1_r}}{4\pi r^2}[/tex]
 

Suggested for: "Biot-Savart equivalent" of Faraday's Law?

Replies
2
Views
600
Replies
78
Views
5K
Replies
6
Views
516
Replies
32
Views
2K
Replies
13
Views
995
Replies
4
Views
862
Replies
2
Views
679
Back
Top