- #1
chimneydials
- 2
- 0
Hi everyone,
I have some questions about birefringence. I have searched in vain on
the Internet and in a few books (it's tough to find books on
birefringence).
Usually determining how rays propagate after birefringence is simple
because the light is incident normally and the ne of the e-ray is
known.
But in my situation, I need to analyze light that is incident at an
angle. Moreover, the ne is also not known. As in only the maximum ne
is known but ne as you know varies with the angle between the o-ray
and the optic axis (if I am not wrong). So, ne should also change with
the incident angle. Does anyone have an equation that takes in the
incident angle, the max ne and the no and finds the walkoff angle +
refraction angle?
One more question: is birefringence expressed purely by differences in
ne and no? So, suppose I know the ne for a given situation, I should
be able to find the difference in angle between the o-ray and e-ray
using only Snell's law? Or is there a separate equation for Poynting
walkoff?
I am rather confused about these topics. Basically, I understand
birefringence conceptually but I have been unable to find appropriate
equations to apply for specific optical systems involving
birefringence. Hope some of you can help me with this. Even if you
don't know the answers to the questions, it would be helpful if you
can point me to some good sources either online or on paper.
Thanks.
I have some questions about birefringence. I have searched in vain on
the Internet and in a few books (it's tough to find books on
birefringence).
Usually determining how rays propagate after birefringence is simple
because the light is incident normally and the ne of the e-ray is
known.
But in my situation, I need to analyze light that is incident at an
angle. Moreover, the ne is also not known. As in only the maximum ne
is known but ne as you know varies with the angle between the o-ray
and the optic axis (if I am not wrong). So, ne should also change with
the incident angle. Does anyone have an equation that takes in the
incident angle, the max ne and the no and finds the walkoff angle +
refraction angle?
One more question: is birefringence expressed purely by differences in
ne and no? So, suppose I know the ne for a given situation, I should
be able to find the difference in angle between the o-ray and e-ray
using only Snell's law? Or is there a separate equation for Poynting
walkoff?
I am rather confused about these topics. Basically, I understand
birefringence conceptually but I have been unable to find appropriate
equations to apply for specific optical systems involving
birefringence. Hope some of you can help me with this. Even if you
don't know the answers to the questions, it would be helpful if you
can point me to some good sources either online or on paper.
Thanks.