jbcool
- 10
- 0
Now, I must preface this by saying that my understanding of QFT is limited, and my understanding of GR is even more so. Nevertheless, I was reading about the No Hair Theorem, and it seemed to me to be suggestive of the indiscernibility of Quantum Particles. Obviously, for a macroscopic black hole, this is merely analogy, but for a microscopic black hole, this isn't necessarily true. If a black hole can be quantized solely by M, Q, and L, then, on the microscopic level, it would make sense to have Q at the very least quantized. It also wouldn't be entirely out of the question to associate L with spin, since they are both intrinsic angular momenta. This would lead one to conclude that black holes must be bosonic since they can have 0 angular momenta (Schwarzschild BH). If it were some how possible to attribute a bosonic field to a black hole, it would make sense to describe it by the two coupling constants Q and M, and have a spin L. Is this logical, or is it too speculative.