Graduate Bloch momentum-space wave functions

Click For Summary
SUMMARY

The discussion centers on the calculation of Bloch wave functions in momentum space, specifically using Sakurai's notation. The wave function is expressed as $$ \phi(\vec k) = \langle \vec k | \alpha \rangle $$ and expanded through integrals involving the Bloch wave function $$ u_{k'}(\vec r) $$ and reciprocal lattice vectors $$ \vec G $$. Key points include the distinction between crystal momentum and true momentum, emphasizing that crystal momentum is a quantum number rather than a physical momentum. The velocity operator in reciprocal space is defined as $$ \mathbf{ \hat v_{\mathbf k}} = \frac 1 {\hbar } \nabla_{\mathbf k} \hat H_{\mathbf k} $$, which connects the discussion to the Hamiltonian's behavior in periodic potentials.

PREREQUISITES
  • Understanding of Bloch wave functions
  • Familiarity with quantum mechanics notation, particularly Sakurai's notation
  • Knowledge of reciprocal lattice vectors and their significance
  • Concept of crystal momentum versus physical momentum
NEXT STEPS
  • Study the derivation of Bloch wave functions in momentum space
  • Learn about the implications of crystal momentum in solid-state physics
  • Explore the role of the velocity operator in quantum mechanics
  • Investigate the properties of periodic potentials and their effects on wave functions
USEFUL FOR

Physicists, particularly those specializing in solid-state physics, quantum mechanics students, and researchers interested in wave functions and their applications in periodic systems.

raz
Messages
3
Reaction score
1
TL;DR
How would be the most correct way to obtain the Bloch momentum-space wave functions?
Hello, I wonder if it is possible to write Bloch wave functions in momentum space.
To be more specific, it would calculate something like (using Sakurai's notation):
$$ \phi(\vec k) = \langle \vec k | \alpha \rangle$$
Moving forward in a few steps:
Expanding:
$$ \phi(\vec k) = \int d^3\vec r \langle \vec k | \vec r \rangle \langle \vec r | \alpha \rangle$$
Replacing the element ##\langle \vec k | \vec r \rangle## and considering that ##\langle \vec r | \alpha \rangle## will be the Bloch wave function:
$$ \phi(\vec k) = \frac 1 {(2\pi)^{3/2}} \int d^3\vec r e^{-i\vec k \cdot \vec r} u_{k'}(\vec r)e^{i\vec k' \cdot \vec r}$$
or:
$$ \phi(\vec k) = \frac 1 {(2\pi)^{3/2}} \int d^3\vec r e^{i(\vec k' - \vec k) \cdot \vec r} u_{k'}(\vec r)$$
Remembering that ##u_{k'}(\vec r)## may be represented as:
$$u_{k'}(\vec r) = \sum_{\vec G} c_{\vec k' - \vec G} e^{-i\vec G \cdot \vec r}$$
Being ##\vec G## a reciprocal lattice vectors family and ##c_{\vec k' - \vec G}## a parameter defined by the central equation.
From this point some doubts arise: if the step by step is correct; if ##\vec k' - \vec k = 0## or if ##\vec k' - \vec k = \vec G## may be considered. Note that if this last statement is correct, replacing ##u_{k'}(\vec r)## in the integral will cause the exponential terms to vanish.
Solving these questions, how would be the most correct way to calculate the integral and get a final answer?
 
Physics news on Phys.org
I think there is a misconception here. If you work with electrons in a periodic potential your Hamiltonian is invariant only with respect to a set of discrete translations so the momentum is not a good quantum number to label your states.

If you label your Bloch state as ##\ket{\mathbf \alpha}## then ##\braket{\mathbf r | \alpha}=e^{-i \alpha \cdot \mathbf r} u_{\alpha}(\mathbf r) = \psi_{\alpha}(\mathbf r)##. Here ##\alpha## is what you would usually call ##\mathbf k## and it is called crystal momentum (but it is not a momentum! it is just a quantum number that you use to label your state!).

In some context, it behaves as it were a momentum, but it is not (see Ashcroft, Mermin). You can clearly see it because ##-i \hbar \nabla \psi_{\alpha}(\mathbf r) \neq \hbar \alpha##.
 
Your explanation makes sense. In fact, the "momentum" depends on a discrete variable. Even if we approximate this discretization to a continuum (huge amount of electrons and possible states) still wouldn't it make sense to use a description via momentum?
 
To add new states you need to add another unit cell to your array of cells. But if you add another unit cell the symmetry of the hamiltonian doesn't change at all (it's still made of a set of cells, no continuous translational symmetry), hence momentum is still not a good variable to work with. You can add how many cells you want (meaning that you are working with a finer and finer k-mesh) but nothing can change.

If you really want a connection with the momentum you can show (check for yourself) that the velocity operator ## \mathbf{ \hat v} ## (defined as ## \mathbf {\hat v} = \frac {-i} {\hbar} [\mathbf{\hat r}, \hat H]##) is given by (in reciprocal space):
$$\mathbf{ \hat v_{\mathbf k}} = \frac 1 {\hbar } \nabla_{\mathbf k} \hat H_{\mathbf k}$$

That's as far as you can go, I guess.
 
Last edited:
Thank you dRic2, your answers were enlightening!
 
raz said:
Summary:: How would be the most correct way to obtain the Bloch momentum-space wave functions?

Hello, I wonder if it is possible to write Bloch wave functions in momentum space.
To be more specific, it would calculate something like (using Sakurai's notation):
$$ \phi(\vec k) = \langle \vec k | \alpha \rangle$$
Moving forward in a few steps:
Expanding:
$$ \phi(\vec k) = \int d^3\vec r \langle \vec k | \vec r \rangle \langle \vec r | \alpha \rangle$$
Replacing the element ##\langle \vec k | \vec r \rangle## and considering that ##\langle \vec r | \alpha \rangle## will be the Bloch wave function:
$$ \phi(\vec k) = \frac 1 {(2\pi)^{3/2}} \int d^3\vec r e^{-i\vec k \cdot \vec r} u_{k'}(\vec r)e^{i\vec k' \cdot \vec r}$$
or:
$$ \phi(\vec k) = \frac 1 {(2\pi)^{3/2}} \int d^3\vec r e^{i(\vec k' - \vec k) \cdot \vec r} u_{k'}(\vec r)$$
Remembering that ##u_{k'}(\vec r)## may be represented as:
$$u_{k'}(\vec r) = \sum_{\vec G} c_{\vec k' - \vec G} e^{-i\vec G \cdot \vec r}$$
Being ##\vec G## a reciprocal lattice vectors family and ##c_{\vec k' - \vec G}## a parameter defined by the central equation.
From this point some doubts arise: if the step by step is correct; if ##\vec k' - \vec k = 0## or if ##\vec k' - \vec k = \vec G## may be considered. Note that if this last statement is correct, replacing ##u_{k'}(\vec r)## in the integral will cause the exponential terms to vanish.
Solving these questions, how would be the most correct way to calculate the integral and get a final answer?
Closest answer:
الشكر
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
896
  • · Replies 17 ·
Replies
17
Views
2K