Bloch momentum-space wave functions

Click For Summary

Discussion Overview

The discussion centers around the possibility of expressing Bloch wave functions in momentum space, particularly through the use of mathematical expansions and integrals. Participants explore the implications of using momentum as a descriptor in the context of periodic potentials and the nature of crystal momentum.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant questions the validity of writing Bloch wave functions in momentum space and presents a mathematical framework for doing so, including integrals and the representation of the Bloch function.
  • Another participant argues that momentum is not a good quantum number for labeling states in a periodic potential, emphasizing that crystal momentum is a quantum number rather than an actual momentum.
  • A different viewpoint suggests that even with the discrete nature of momentum, a momentum-based description could still be meaningful, especially in the limit of a large number of electrons and states.
  • Further contributions clarify that adding unit cells does not change the underlying symmetry of the Hamiltonian, thus maintaining the argument that momentum remains a poor variable for analysis.
  • One participant introduces the velocity operator in reciprocal space as a potential connection to momentum, though they suggest this is the extent of the relationship.
  • A later post expresses appreciation for the insights shared, indicating that the discussion has been enlightening.

Areas of Agreement / Disagreement

Participants express differing views on the appropriateness of using momentum as a descriptor for Bloch states, with some asserting it is not suitable while others suggest it could still be relevant under certain conditions. The discussion remains unresolved regarding the best approach to calculate Bloch momentum-space wave functions.

Contextual Notes

Participants highlight the limitations of using momentum in the context of periodic potentials and the implications of discrete versus continuous variables in quantum mechanics. There are unresolved questions about the mathematical steps involved in the proposed calculations.

raz
Messages
3
Reaction score
1
TL;DR
How would be the most correct way to obtain the Bloch momentum-space wave functions?
Hello, I wonder if it is possible to write Bloch wave functions in momentum space.
To be more specific, it would calculate something like (using Sakurai's notation):
$$ \phi(\vec k) = \langle \vec k | \alpha \rangle$$
Moving forward in a few steps:
Expanding:
$$ \phi(\vec k) = \int d^3\vec r \langle \vec k | \vec r \rangle \langle \vec r | \alpha \rangle$$
Replacing the element ##\langle \vec k | \vec r \rangle## and considering that ##\langle \vec r | \alpha \rangle## will be the Bloch wave function:
$$ \phi(\vec k) = \frac 1 {(2\pi)^{3/2}} \int d^3\vec r e^{-i\vec k \cdot \vec r} u_{k'}(\vec r)e^{i\vec k' \cdot \vec r}$$
or:
$$ \phi(\vec k) = \frac 1 {(2\pi)^{3/2}} \int d^3\vec r e^{i(\vec k' - \vec k) \cdot \vec r} u_{k'}(\vec r)$$
Remembering that ##u_{k'}(\vec r)## may be represented as:
$$u_{k'}(\vec r) = \sum_{\vec G} c_{\vec k' - \vec G} e^{-i\vec G \cdot \vec r}$$
Being ##\vec G## a reciprocal lattice vectors family and ##c_{\vec k' - \vec G}## a parameter defined by the central equation.
From this point some doubts arise: if the step by step is correct; if ##\vec k' - \vec k = 0## or if ##\vec k' - \vec k = \vec G## may be considered. Note that if this last statement is correct, replacing ##u_{k'}(\vec r)## in the integral will cause the exponential terms to vanish.
Solving these questions, how would be the most correct way to calculate the integral and get a final answer?
 
Physics news on Phys.org
I think there is a misconception here. If you work with electrons in a periodic potential your Hamiltonian is invariant only with respect to a set of discrete translations so the momentum is not a good quantum number to label your states.

If you label your Bloch state as ##\ket{\mathbf \alpha}## then ##\braket{\mathbf r | \alpha}=e^{-i \alpha \cdot \mathbf r} u_{\alpha}(\mathbf r) = \psi_{\alpha}(\mathbf r)##. Here ##\alpha## is what you would usually call ##\mathbf k## and it is called crystal momentum (but it is not a momentum! it is just a quantum number that you use to label your state!).

In some context, it behaves as it were a momentum, but it is not (see Ashcroft, Mermin). You can clearly see it because ##-i \hbar \nabla \psi_{\alpha}(\mathbf r) \neq \hbar \alpha##.
 
  • Like
Likes   Reactions: raz
Your explanation makes sense. In fact, the "momentum" depends on a discrete variable. Even if we approximate this discretization to a continuum (huge amount of electrons and possible states) still wouldn't it make sense to use a description via momentum?
 
To add new states you need to add another unit cell to your array of cells. But if you add another unit cell the symmetry of the hamiltonian doesn't change at all (it's still made of a set of cells, no continuous translational symmetry), hence momentum is still not a good variable to work with. You can add how many cells you want (meaning that you are working with a finer and finer k-mesh) but nothing can change.

If you really want a connection with the momentum you can show (check for yourself) that the velocity operator ## \mathbf{ \hat v} ## (defined as ## \mathbf {\hat v} = \frac {-i} {\hbar} [\mathbf{\hat r}, \hat H]##) is given by (in reciprocal space):
$$\mathbf{ \hat v_{\mathbf k}} = \frac 1 {\hbar } \nabla_{\mathbf k} \hat H_{\mathbf k}$$

That's as far as you can go, I guess.
 
Last edited:
  • Like
Likes   Reactions: raz
Thank you dRic2, your answers were enlightening!
 
  • Like
Likes   Reactions: dRic2
raz said:
Summary:: How would be the most correct way to obtain the Bloch momentum-space wave functions?

Hello, I wonder if it is possible to write Bloch wave functions in momentum space.
To be more specific, it would calculate something like (using Sakurai's notation):
$$ \phi(\vec k) = \langle \vec k | \alpha \rangle$$
Moving forward in a few steps:
Expanding:
$$ \phi(\vec k) = \int d^3\vec r \langle \vec k | \vec r \rangle \langle \vec r | \alpha \rangle$$
Replacing the element ##\langle \vec k | \vec r \rangle## and considering that ##\langle \vec r | \alpha \rangle## will be the Bloch wave function:
$$ \phi(\vec k) = \frac 1 {(2\pi)^{3/2}} \int d^3\vec r e^{-i\vec k \cdot \vec r} u_{k'}(\vec r)e^{i\vec k' \cdot \vec r}$$
or:
$$ \phi(\vec k) = \frac 1 {(2\pi)^{3/2}} \int d^3\vec r e^{i(\vec k' - \vec k) \cdot \vec r} u_{k'}(\vec r)$$
Remembering that ##u_{k'}(\vec r)## may be represented as:
$$u_{k'}(\vec r) = \sum_{\vec G} c_{\vec k' - \vec G} e^{-i\vec G \cdot \vec r}$$
Being ##\vec G## a reciprocal lattice vectors family and ##c_{\vec k' - \vec G}## a parameter defined by the central equation.
From this point some doubts arise: if the step by step is correct; if ##\vec k' - \vec k = 0## or if ##\vec k' - \vec k = \vec G## may be considered. Note that if this last statement is correct, replacing ##u_{k'}(\vec r)## in the integral will cause the exponential terms to vanish.
Solving these questions, how would be the most correct way to calculate the integral and get a final answer?
Closest answer:
الشكر
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K