I Boltzmann Distribution: Formula & Fig 2a in Document

AI Thread Summary
The discussion centers on the formula used to create the exponential Boltzmann distribution depicted in Figure 2a of a referenced document. Participants clarify that the formula is 600*exp(-βε), with β representing a parameter related to energy. The confusion arises around determining the correct values for the parameters, particularly around x=1 yielding y=200. The caption of the figure does not provide sufficient clarity, leading to the exploration of the relationship between the variables. Ultimately, the formula is simplified to exp(log(600) - βε), confirming its straightforward nature.
Physics news on Phys.org
Doesn't the caption explain it?
 
funny,
But what values to put in?
Around x=1 it seems to get y=200
e^(ln(600)-1/(1.381×10^-23*300)) = 0?
 
Since the x-axis is βε, the only free parameter is α. As you realized, it goes through ~600 at βε=0, so the formula being plotted is clearly 600*exp(-βε). Or, if you like, exp(log(600) - βε)
 
Doh! So simple, thanks!
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Back
Top