I Boltzmann Distribution: Formula & Fig 2a in Document

AI Thread Summary
The discussion centers on the formula used to create the exponential Boltzmann distribution depicted in Figure 2a of a referenced document. Participants clarify that the formula is 600*exp(-βε), with β representing a parameter related to energy. The confusion arises around determining the correct values for the parameters, particularly around x=1 yielding y=200. The caption of the figure does not provide sufficient clarity, leading to the exploration of the relationship between the variables. Ultimately, the formula is simplified to exp(log(600) - βε), confirming its straightforward nature.
Physics news on Phys.org
Doesn't the caption explain it?
 
funny,
But what values to put in?
Around x=1 it seems to get y=200
e^(ln(600)-1/(1.381×10^-23*300)) = 0?
 
Since the x-axis is βε, the only free parameter is α. As you realized, it goes through ~600 at βε=0, so the formula being plotted is clearly 600*exp(-βε). Or, if you like, exp(log(600) - βε)
 
Doh! So simple, thanks!
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top