- #1
- 2,259
- 1
Using the theorem that in any boolean ring a+a=0 for all a in boolean ring R.
Then 0 is in R. Make the multiplicative identity 1 is also in it. Therefore R can only take 0 and 1 and no more because 1+1=0. 0+0=0. 1+0=1 always. So 2 or other elements can never occur.
Then 0 is in R. Make the multiplicative identity 1 is also in it. Therefore R can only take 0 and 1 and no more because 1+1=0. 0+0=0. 1+0=1 always. So 2 or other elements can never occur.