I Born rule for macroscopic objects

durant35
Messages
292
Reaction score
11
There is one thing that I don't understand when considering quantum mechanics for macroscopic bodies. It is said that classical mechanics is a valid approximation and that macroscopic bodies that we encounter on everyday basis have a small uncertainty in position and momentum.

So far, so good.

But when the many-worlds interpretation is invoked, there are suggestions that the branching in the macroscopic world is occurring. The problem with this is the probability. If we just consider things from a probabilistic perspective, there is an enormous chance that the things around us will behave approximately classicaly and follow classical paths without some miracoulous deviations, like my monitor suddenly turning left without any force applied to it. So if we strictly try to give probabilities for macroscopic behaviour, one outcome has something like 99.9999..% probability and sudden deviations have very, very small amplitudes.

But in MWI, all outcomes occur. In fact it is ridicoulous to say all, it's better to say one that we would expect (high amplitude branch) and many, many low probability branches. So does quantum mechanics actually give probabilities for macroscopic behavior like I mentioned and do MWI supporters really believe that the branching occurs on this weird way, where one branch is always extremely probable and others are negligible?
 
Physics news on Phys.org
durant35 said:
it is ridicoulous
MWI is ridiculous if you take it to mean that everything that can happen happens.

In the only world we see only one thing happens, and the other worlds are irrelevant since we cannot say the slightest thing about them. All probabilities we measure are probabilities about the single branch we have a memory about - only that counts. No branching ever happens as all branches are already present in the wave function, at any time. The branches are just a label attached to terms in the wave function when expressed in a particular basis. Lots of irrelevant blabla accompanies this to make it sound interesting and explanatory.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top