- #1
vogtster
- 5
- 0
Hey everyone
Just a picture of my configuration.
The assumption here is $$\epsilon_a,\epsilon_b,\epsilon_c$$ are different from one another. Really the interest of this problem is to find the scalar potential $$\phi$$, such that $$\nabla^2 \phi = 0$$.
So now my question, about jump conditions,
Surface at $$y=0$$ has tangent $$\vec{E}$$ continous, thus
\begin{align}
-\hat{x} \cdot \nabla \phi_a = -\hat{x} \cdot \nabla \phi_b \\
-\hat{x} \cdot \nabla \phi_a = -\hat{x} \cdot \nabla \phi_c \\
\end{align}
However if we look at $$x=0$$ then normal $$\vec{D}$$ is continuous thus
\begin{align}
-\epsilon_b \hat{x} \cdot \nabla \phi_b = - \epsilon_c \hat{x} \cdot \nabla \phi_c \\
\end{align}
From our relation above this implies that $$\epsilon_b=\epsilon_c$$, which we made no such assumption. So this looks like a contradiction to me.
Can someone tell me where I have gone wrong?
Thank you!
Just a picture of my configuration.
The assumption here is $$\epsilon_a,\epsilon_b,\epsilon_c$$ are different from one another. Really the interest of this problem is to find the scalar potential $$\phi$$, such that $$\nabla^2 \phi = 0$$.
So now my question, about jump conditions,
Surface at $$y=0$$ has tangent $$\vec{E}$$ continous, thus
\begin{align}
-\hat{x} \cdot \nabla \phi_a = -\hat{x} \cdot \nabla \phi_b \\
-\hat{x} \cdot \nabla \phi_a = -\hat{x} \cdot \nabla \phi_c \\
\end{align}
However if we look at $$x=0$$ then normal $$\vec{D}$$ is continuous thus
\begin{align}
-\epsilon_b \hat{x} \cdot \nabla \phi_b = - \epsilon_c \hat{x} \cdot \nabla \phi_c \\
\end{align}
From our relation above this implies that $$\epsilon_b=\epsilon_c$$, which we made no such assumption. So this looks like a contradiction to me.
Can someone tell me where I have gone wrong?
Thank you!
Last edited: