MHB -c03 write prime factorization of the LCM of A and B

AI Thread Summary
The discussion focuses on calculating the least common multiple (LCM) of two numbers, A and B, using their prime factorizations. A is given as 2·3²·5·7³·11³·13², while B is 3²·5·7²·11². The LCM is determined to be 2·3²·5·7³·11³·13², which incorporates the highest powers of each prime factor from both A and B. The greatest common factor (GCF) is identified as 3²·5·7²·11², highlighting the relationship between A and B. The LCM is not simply the product of A and B unless they are relatively prime.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Build the least common multiple of A and B
a. write the prime factorization of the least common multiple of A and B.
$A=2\cdot 3^2\cdot 5\cdot 7^3\cdot 11^3\cdot 13^2$
$B= 3^2 \cdot 5 \cdot 7^2 \cdot 11^2$
$\dfrac{2\cdot \cancel{3^2}\cdot \cancel{5\cdot 7^2} 7\cdot \cancel{11^2} 11\cdot 13^2}
{\cancel{3^2} \cdot 5 \cancel{\cdot 7^2} \cdot \cancel{11^2}}
=2\cdot 7\cdot 11\cdot 13^2=26026$

not sure if I went the right direction on this how do we get the prime factorization
 
Mathematics news on Phys.org
The LCM would be …

$2 \cdot 3^2 \cdot 5 \cdot 7^3 \cdot 11^3 \cdot 13^2$

The GCF would be …

$3^2 \cdot 5 \cdot 7^2 \cdot 11^2$
 
so its not A and B together? altho B is subset of A
 
LCM is A times B (together) only if A and B are relatively prime
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top