nrqed said:
Thanks for your insightfull comments, blechman!
A few stupid questions...
I am *WAY* outside my area of expertise here (I was Adam Falk's grad student, after all!) But I can try to give a few "stupid answers" to your NOT SO stupid questions. I make no promises that they are completely accurate...
Something that always puzzled me in those scenarios is this: if we are on the brane, then the brane is filling all space for us. How do we perceive this? I mean, particles are actually the ends of open strings attached to the brane but what about the brane itself. It has an energy density (it has a tension). How does that appear to us? Th eobvious guess might be dark energy or even dark matter but I have never seen this stated explicitly.
There has been research done in this direction (brane tension as dark energy), but as I know nothing about it, I am hesitant to say anything. Branes are topological defects, and therefore can support various (form) fields in the KK-decomposition. This is another way branes can make themselves known to us.
Second question: if an open string is attached to a brane then the brane is not a manifold, no? I mean, if I picture an open string attached to a brane, at the point of contact (which has a certain width corresponding to the width of the string) we don't have a manifold (for the same reason that a two dimensional plane with a one-dimensional line piercing it is not a manifold). Maybe that's not a problem or maybe I misunderstand "strings attached to a brane".
You are right: branes are not (Riemann) manifolds. They are "topological defects". The idea is this: if you take a look at the open string action and you do the usual thing to find the equations of motion you end up with a total divergence which becomes a surface term (this is just the usual classical Hamilton principle story). This term has to vanish, but there are several ways this can happen. One way is to make the derivative of the string coordinate fields vanish at the boundaries (Neuman BC). This is what you naively do to get an open string. The other thing that will work is if the string is periodic - this will give you a closed string. HOWEVER, it turns out you can also fix the value of the coordinates themselves (Dirichlet BC), and this is something quite different. When you fix the endpoints of the string, you generate a coordinate manifold of all the points where the (open) strings can end. THIS object is what is called a "D-brane" (D=Dirichlet). So it is a topological manifold.
Third dumb question: I don't quite understand why closed strings may leave the surface of the brane but not open strings. If I try to picture a closed string emitted from the surface of a brane, it seems impossible without tearing. I probably miss something obvious.
see my previous comments. think about how open strings can form closed strings by endpoints coming together. When that happens the string changes its boundary conditions (Dirichlet -> Periodic) and branes are no longer required. Remember that implicitly whenever there is a brane, it means that there are a bunch of open strings coming off of that brane. A brane without open strings doesn't make sense!
arivero said:
Really? Is there some recent paper telling of branes being <<the place where we "observe" the mesons as q-qbar pairs>>?
it is the definition of a brane (see above, Polchinski's text, Zwieback's text).
arivero said:
Hmm and with N=3, of course.
Well, of course we don't see N=3 (!) Usually this works in the Large-N limit. A lot of these ideas were presented old-school in the classic text by Green-Schwarz-Witten, and in a more recent incarnation in hep-th/9905111. Of course, all these sources are quite technical.
Anyway, hope that helps. And remember that this is beyond my area of expertise (I've studied it on the side, but never done actual research in it).